学年

質問の種類

数学 高校生

中央の値というのはどこからわかるのでしょうか?

124 第5章 微分法 基礎問 69 増減・極値 (I) f(x)=-x+α(x-2)2 (a>0) について, 次の問いに答えよ。 (1) f(x)が極小値をもつようなαの値の範囲を求めよ。 (2) (1)のとき極小値を与えるxを とすれば, 2<x<3 が成りたつこ 精講 とを示せ 4次関数の微分は,技術的には,数学Ⅱの微分の考え方と差はあり ません。 (1) 4次関数 (x^ の係数 <0) が極小値をも つとはどういうことでしょうか? とりあえず、f'(x)=0 をみたすx が存在しないと いけませんが,y=f(x) のグラフを想像すると右図 のような形が題意に適するようです. 極大 - 極大 - N 平 X1 -極小 ということは,極大値を2つもつ必要もありそうです. このことから、次 のことがいえそうです. f'(x) = 0 が異なる3つの実数解をもつ実 ⅡB ベク (2)=x1 はf'(x) = 0 の3つの解を小さい順に並べたときの中央の値にな りますが, 方程式の解が特定の範囲に存在することを示すとき, グラフを利 用します. (I・A46解の配置) 解答 (1) f'(x)=-4°+2a(x-2)=g(x) とおく. かたむき f(x)が極小値をもつとき, g(x)=0 は異なる3つの実数解をもつ。 g'(x)=-12x2+2a=0 を解くと 一 a x=± (a>0より) aia (12)\ (1) g(x)において,(極大値)(極小値) <0であればよいので 4a 3V 6 a 4a -4a -4a 3V 6

解決済み 回答数: 1
数学 高校生

なんで黄色のところは↗︎になるんですか?

基本 関数y= 指針 例 338 基本例 次の関数の極値を求め、そのグラフの概形をかけ。 (1) y=3x-16x +18x2+5 211 4次関数の極値グラフ (2) y=x^-8x3+18x2-11 3次関数の極値やグラフと同じ方針で 00000 基本209 210 218 解答 指針 4次関数であっても, p.335~337 で学習した3 める。 つまり、次の手順による。 ①y を求め,まず, y = 0 となるxの値を求める。 ②yの符号の変化を調べる (増減表を作る)。 ③ 作成した増減表をもとにしてグラフをかく。 CHART 関数の極値・グラフ y'の符号の変化を調べて増減表を作る (1)y=12x-48x2+36x =12x(x2-4x+3) =12x(x-1)(x-3) y = 0 とすると x=0, 1,3 yの増減表は次のようになる。 5 10 1 3 X | z=y=12x(x-1)(x-3) のグラフ ZA +0 ... x 0 1 3 ... y' 0 + 0 0 + 極小 |極大 y 5 |極小| -22 -22 よって 10 x=0で極小値5,x=1で極大値10, x=3で極小値-22 をとる。また,グラフは右上の図のようになる。 (2) y'=4x3-24x2+36x=4x(x2-6x+9) =4x(x-3)2 y=0 とすると x=0,3 yの増減表は次のようになる。 Ay ((S)XS16 2か所で極小となる。 解答 |z=y'=4x(x-3)'のグ ラフ ZA 検討 x *** 0 3 A y' 0 + 20 + 1 3 極小 + 0 3 I XD y |-11 167 C-11 よって x=0で極小値11 をとる。また, グラフは右上の図のようになる。 極小値のみをとる。 注意 (2)で,x=3のとき極値はとらない。 なお, p.336 の例題 210 (2) 同様, グラフ上のx座標が3である点における接線x=3のとき=0 の傾きは0である。 練習 次の関数の極値を求め、そのグラフの概形をかけ。 ②211 (1) y=x8x2+7 (2)

解決済み 回答数: 1
数学 高校生

211(2)で16は何で極大にならないんですか?

基本 関数y= 指針 例 338 基本例 次の関数の極値を求め、そのグラフの概形をかけ。 (1) y=3x-16x +18x2+5 211 4次関数の極値, グラフ (2) y=x^-8x3+18x2-11 00000 3次関数の極値やグラフと同じ方針で 基本 209 210 218 解答 指針 4次関数であっても, p.335~337 で学習した3 める。 つまり、次の手順による。 ①y を求め,まず, y = 0 となるxの値を求める。 ②yの符号の変化を調べる (増減表を作る)。 ③ 作成した増減表をもとにしてグラフをかく。 CHART 関数の極値・グラフ y'の符号の変化を調べて増減表を作る (1)y=12x-48x2+36x =12x(x2-4x+3) =12x(x-1)(x-3) y = 0 とすると x=0, 1,3 yの増減表は次のようになる。 5 10 I 3 | z=y=12x(x-1)(x-3) のグラフ ZA 0 1 ... x 0 1 3 ... y' 0 + 0 0 + 極小 |極大 y 5 10 |極小 -22 -22 よって X 解答 x=0で極小値 5,x=1で極大値10, x=3で極小値-22 をとる。また,グラフは右上の図のようになる。 (2) y'=4x3-24x2+36x=4x(x2-6x+9) =4x(x-3)2 y=0 とすると x=0,3 yの増減表は次のようになる。 Ay ((S)XS16 2か所で極小となる。 |z=y'=4x(x-3)'のグ ラフ ZA x *** 0 3 y' 0 + 20 + 1 3 極小 y |-11 167 -11 よって x=0で極小値11 A + 0 3 I 極小値のみをとる。 をとる。また, グラフは右上の図のようになる。 注意 (2)で,x=3のとき極値はとらない。 なお, p.336 の例題 210 (2) 同様, グラフ上のx座標が3である点における接線x=3のとき=0 の傾きは0である。 練習 次の関数の極値を求め、 そのグラフの概形をかけ。 ②211 (1) y=x-8x2+7 (2) 検討

解決済み 回答数: 1
数学 高校生

微分に着いてです。総合問題30の方で質問があるのですが、類題では(画像3枚目)x=0になる場合も考えているのにこの問題では考えていないのはなぜですか...?教えて頂きたいです。

用いて表す。 総合 実数a, b に対し, 関数f(x)=x^+2ax3+(a2+1)x2-a3+α+bがただ1つの極値をもち, その 30 極値が0以上になるとき, a, b の満たす条件を求めよ。 f'(x)=4x3+6ax2+2(a2+1)x=2x(2x2+3ax+a2+1) [類 横浜国大] 本冊 数学Ⅱ 例題 218 まず、微分する。 f'(x) =0 とすると x=0, 2x2+3ax+a2+1=0 xの2次方程式 2x2+3ax+a2+1=0 ...... ①の判別式をDと ←① の実数解の個数が するとD=(3a)2-4・2・(a+1)=α²-8=(a+2√2) (α-2√2) X [1] D>0 すなわち a< 2√22√2 <a のとき カギとなる。それはD の符号によって変わって くるから,D>0,D=0, α+1>0より,x=0は①の解ではないから,①はx=0以D<0 に分ける。 外の異なる2つの実数解をもつ。 ゆえに、f'(x) = 0 は異なる3つの実数解をもつ。 この3つの解をα, B, y (a<B<y) とすると, f (x) の増減 x 表は次のようになる。 10 a B r ... ←本冊 p.347 の 参考 参 0 +0 0 + 照。 極大 \ 極小 > f'(x) f(x) 極小 よって, f(x) は極値を3つもつから、不適。 ◯[2] D0 すなわち a=±2√2 のとき ①は重解 x=- 2-2 3 3a == -α をもち 2x2+3ax+a2+1≧0 4 3 ←等号はx=- aのと き成り立つ。 (i) a=2√2のとき 3√√2 f'(x) = 0 は x=0, を解にもつから, 3√√2 XC 0 2 -2 f(x) の増減表は右のようになる。 f'(x) - 20 + 0 + よって, f(x) は x=0で極小となり, 極値0- を1つだけもつから,適する。 f(x) 極小 f √(3√2) (ii) a=2√2のとき f'(x)=0 は x=- 3√√2 2 0を解にもつか 3√√2 XC 0 ら,f(x) の増減表は右のようになる。 2 値を1つだけもつから,適する。 よって, f(x) は x=0で極小となり,極 f'(x) - 0 f(x) (3√2 2 20 ▼ 極小 > : +

解決済み 回答数: 1