学年

質問の種類

数学 高校生

19の(2)の問題で、もし、分ける部屋が区別のつかない3つの部屋なら、3!で割る で合ってますか??

8889 例題 19 重複順列 00000 (1) 0, 1,2,3の4種類の数字を用いて, 3桁以下の正の整数は何個作れるか。 ただし,同じ数字を繰り返し用いてもよいものとする。 (2)7人を,2つの部屋 A, B に入れる方法は何通りあるか。 また, 区別をし ない2つの部屋に入れる方法は何通りあるか。 ただし, それぞれの部屋に は少なくとも1人は入れるものとする。 CHART & THINKING 1章 p.279 基本事項 3. 基本14 2 順列 重複順列 n™ (i) 数字を並べてできる整数 各桁の数字の条件に注目 最高位に0は使えないことに注意しよう。 0 以外の 4個から重複を許し 3通り て2個取って並べる 3桁 2桁 1桁, それぞれの場合に分けて考えよう。 (2) 区別をなくす場合 同じものは何通りあるか考える →4通り (前半) まず, 空の部屋があってもよいとして、後で空になる場合を除く。 (後半) 区別をなくすと同じ入れ方になるものは、例えば、次のような2通りずつある (=「ペア」で現れる)ことに注意しよう。 A B A B 例 と 1 2 3 4 5 6 7 567 1234 じゃない。 (1) 3桁の整数は, 百の位の数字が0以外であるから 3×4=48 (個) 2桁の整数は 3×4=12 (個), 1桁の整数は 3個 よって, 3桁以下の正の整数は 48+12+3=63 (個) 2桁の整数は百の位の数字が 0, 1桁の整数は百と十 の位の数字が 0 とすると, 3桁以下の整数は 43個 (別解 000 になる場合を除いて 43-1=63 (個) (2) 空の部屋があってもよいものとして7人をA,Bの部屋 に入れると,その方法は 27=128 (通り) 一方の部屋が空になる場合を除くと 128-2=126 (通り) A,Bの区別をなくすと 126-263 (通り) 百の位の数字の選び方 は0以外の3通りで、 十 の位、一の位は4種類の 数字のどれでもよい。 例えば 012 2桁の整数12 003...... 1桁の整数3 W 異なる2個から重複を許 して7個取り出して並 べる順列の総数と同じ。 区別をなくすと、 一致す る場合がそれぞれ2通 りずつある。 PRACTICE 193 (1) 0, 1,2,3,4,5の6種類の数字を用いて 4桁以下の正の整数は何個作れるか。 ただし、同じ数字を繰り返し用いてもよい。 (2) 9人を, 区別をしない2つの部屋に入れる方法は何通りあるか。 ただし, それぞ れの部屋には少なくとも1人は入れるものとする。

解決済み 回答数: 1
数学 高校生

(3)と(4)がわからないです!お願いしますm(_ _)m

基礎向 96 倍数の規則 ①から⑥までの数字が1つずつかかれた6枚のカードがある。 これから3枚を選んで並べることにより、3桁の整数をつくる このとき,次のような整数はいくつあるか. (1)2の倍数 3の倍数 4の倍数 6 の倍数 ある整数がどんな数の倍数になっているかを調べる方法は,以下の 精講 ようになります. これを知らないと問題が解けません。 ・2の倍数:一の位の数字が偶数 ・3の倍数 各位の数字の和が3の倍数 ・4の倍数: 下2桁の数が4の倍数 ・5の倍数:一の位の数字が 0 または5 ・6の倍数:一の位の数字が偶数で,各位の数字の和が3の倍数 X Zak ・8の倍数:下3桁の数が8の倍数 9の倍数:各位の数字の和が9の倍数 10の倍数:一の位の数字が 0 30 (2)から6までの数字から3つを選んだとき,その和が3の倍数にな る組合せは, (1, 2, 3), (1, 2, 6), (1, 3, 5), (1, 5, 6), (2, 3, 4), (2, 4, 6), (3,4,5),(4,5,6)の8通り. そのおのおのに対して並べ方が3! 通りずつ. .. 8×3!=48 (個) 右になるほど大きく なるように拾ってい く(規則性をもって) (3)から⑥までの数字から2つを選んで2桁の整数をつくるとき, これが4の倍数になるのは, 12,16,24,32,36,52,5664の8通り。 6-2 そのおのおのに対して,その左端におくことができる数は4通りずつ。 .. 8×4=32 (個) (4)(2)の8通りのおのおのについて,一の位が偶数になるように並べる 方法を考えればよい. (1,2,3)(1,5,6,3,4,5) は偶数が1つしかないので、そ れぞれ2個ずつ. (1,2,6,2,3,4,4,5,6) は偶数が2つあるので,それぞ れ, 2×2×1=4(個) ずつ. (2, 4, 6) はすべて偶数なので, 3!=6(個). よって, 2×3+4×3+6=24 (個) (1)一の位が2, 4, ⑥のどれかになるので,まず,一の位から考えます . ポイント 整数が2の倍数, 3の倍数, 4の倍数, 5の倍数, (条件のついた場所を優先) (2)3の倍数になるような3つの数の組が1つ決まると並べ方は3!通りあり ます. (3) 2桁の数で4の倍数であるものを1つ決めて、その左端にもう1つ数字を おくと考えます. 6の倍数,8の倍数, 9の倍数, 10の倍数 になる条件は覚えておく 解答 (1) 一の位の数字の選び方は2, 4, 6の3通りで,このおのおのに対 して百の位、十の位の数字の選び方は sP2=5×4=20 (通り) 演習問題 96 6個の数 0 1 2 3 4 5 の中から4個の異なる数字を選び, そ れらを並べて4桁の整数をつくるとき,25の倍数は何個できるか、

回答募集中 回答数: 0