学年

質問の種類

数学 高校生

赤線ひいたところなんでですか?解説の図のように、BC1も4の時もあるんじゃないんですか?三角形がただ一通りに決まるってどういうことですか🙇‍♂️

64 第3章 図形と計量 *11 三角形は,与えられた辺の長さや角の大きさの条件によって, ただ一通りに決まる 場合や二通りに決まる場合がある。以下,△ABC において AB=4 とする。 (1)AC=6,cos ∠BAC= 一通りに決まる。 =1 とする。このとき, BC ア であり, △ABCはただ (2) sin ∠BAC= とする。このとき、BCの長さのとり得る値の範囲は,点Bと直 3 イ 線 AC との距離を考えることにより, BC≧ ウ である。 BC= またはBC=エ のとき, △ABC はただ一通りに決まる。 ウ また,∠ABC=90° のとき, BC=√オ である。 したがって,△ABCの形状について,次のことが成り立つ。 イ ウ <BC<√オ のとき,△ABC は カ ° BC=√オ のとき, △ABC は • BC > √ オ かつ BC≠ I のとき,△ABCはク。 カ の解答群(同じものを繰り返し選んでもよい。) ale ⑩ ただ一通りに決まり, それは鋭角三角形である 合 ① ただ一通りに決まり,それは直角三角形である 通りに決まり,それは鈍角三角形である ② ③二通りに決まり,それらはともに鋭角三角形である ④二通りに決まり,それらは鋭角三角形と直角三角形である ⑤二通りに決まり,それらは鋭角三角形と鈍角三角形である ⑥ 二通りに決まり,それらはともに直角三角形である ⑦二通りに決まり,それらは直角三角形と鈍角三角形である ⑧ 二通りに決まり,それらはともに鈍角三角形である -BAD Aale [22 共通

解決済み 回答数: 1
数学 高校生

(2)の場合分けの3<=x<5でイコールがつくのは何故か教えてください🙏

00 例題 基本の 158 三角形の成立条件、鈍角三角形となるための条件 [AB=2,BC=x, CA =3である △ABC がある。 1xのとりうる値の範囲を求めよ。 (2) ABC が鈍角三角形であるとき, xの値の範囲を求めよ。 (1) 000 [類 関東学院大 ] P.248 基本事項 3.4 重要 159 \ 三角形の成立条件|b-c| <a<b+c を利用する。 ここでは, 13-2|<x<3+2の形で使うと計算が簡単になる。 角となる場合を考えればよい (三角形の辺と角の大小関係より、最大の辺を考える (2) 鈍角三角形において,最大の角以外の角はすべて鋭角であるから,最大の角が鈍 ことになる)。 そこで、最大辺の長さが3かxかで場合分けをする。 例えばCA(=3) が最大辺とすると となりが導かれる。これに6=3,c=2, a=x を代入して,xの2次不 259 Bが鈍角 COSB<O⇔ c²+a²-b² 2ca <0 c²+a²-b²<0 等式が得られる。 4 B (1)三角形の成立条件から 3-2<x<3+2 <|x-3|<2<x+3または 1 1 <x< 5 よって どの辺が最大辺になるかで場合分けをして考える。 [1] 1 <x<3のとき,最大辺の長さは3であるから,そ の対角が90°より大きいとき鈍角三角形になる。 32>22+x2 x2-5<0 |2-x|<3<2+xを解い てxの値の範囲を求め てもよいが、面倒。 (1)から 1<x [1] 最大辺がCA=3 3 る。 ゆえに すなわち よって (x+√5)(x-√5) <0 ゆえに -√5<x<√5 C B>90⇔AC> AB+BC C 1<x<3との共通範囲は 1<x<√5 で [2] 3≦x<5のとき, 最大辺の長さはxであるから,そ (1) から x<5 の対角が90° より大きいとき鈍角三角形になる。 [2] 最大辺がBC=x x2>22+32 2. 3 C すなわち x²-130 よって ゆえに (x+√13)(x-√13)>0 x<-√13√13 <x B X A>90BC2>AB²+AC² 3≦x<5 との共通範囲は 13 <x<5 [1], [2] を合わせて 1<x<√5/13 <x<5 鋭角三角形である条件を求める際にも、最大の角に着目 し、最大の角が鋭角となる場合を考えればよい。 |AB=x, BC=x-3, CA=x+3である △ABC がある。 のとりうる値の範囲を求めよ。 (2) ABC が鋭角三角形であるとき、xの値の範囲を求めよ。 [類 久留米大] p.263 EX113

解決済み 回答数: 1