学年

質問の種類

数学 高校生

この問題の⑵なんですが、 三枚目のm>4あたりの場合分けで、 場合分けⅠは②の点が3より上にあることが 条件なのに、なぜ場合分けⅡでは②上の点が③より下、または③の上にあるのが条件なんですか? (Ⅰは5,24という上の点を基準にしているのに Ⅱで下の3,8を基準にしている理... 続きを読む

102 2次方程式・2次不等式の整数解 整数mに対し, f(x)=x-mx+"-1 とおく。 (1) 方程式f(z)=0 が,整数の解を少なくとも1つもつようなの値を求め よ。 (2) 不等式 f(x) ≧0 を満たす整数xが,ちょうど4個あるようなmの値を求 めよ。 (秋田大) f(x) の式にはmの1次の項しか含まれていないことに着目する と, f(x)=0, f(x) ≧0 は “パラメタの分離” によって, 放物線 精講 y=-1と直線y=m(x-121) の関係に帰着されます。 解答 また,整数問題とみなすと, (1)では解と係数の関係を利用して2つの整数解 の満たすべき関係式が導かれます。 (2)では, 不等式 f(x) ≧0 を満たす整数が ちょうど4個であるとき, 不等式の解の区間幅からmを絞りこむ方法もありま す。 (1) 2次方程式 f(x)=0, つまり x2-mx+ -1=0 m x2-1=mx ²-1= m(x-1) ......1 の実数解は放物線y=x2-1 ・②と直線 y=m(x-1) •••••• ③ の共有点のx座標に等し 第1章 ① において, (2解の和)=mが整数であるから, 解の1つが整数のとき、 他の解も整数である。した がって“②③ 2つの共有点をもち,それらの 座標が整数である”..… (*) ようなmの値を求め るとよい。

回答募集中 回答数: 0
数学 高校生

244. この問題において、Dを求めることって必要ですか? 実際この問題はDを求めずとも答えに辿り着けるし、 他の教材等で同様の問題の解答を見たときDについて調べていなかったのですが、必要なのでしょうか??

372 基本例題 244 面積の最大最小 (1) 点 (1, 2) を通る直線と放物線y=x² で囲まれる図形の面積をSとする。 S AA ARŠNODUR 小値を求めよ。 指針 点 (1,2) を通る直線の方程式は,その傾きを m とすると,y=m(x-1)+2と表され まず, この直線と放物線が異なる2点で交わるとき, 交点のx座標α, BでSを表す。 このとき, 公式f(x-a)(x-3)dx=-12 (B-α) が利用できる。 更に,S を m の関数で表し,mの2次関数の最小値の問題に帰着させる。 解答 点 (1, 2) を通る傾きmの直線の方程式は y=m(x-1)+2 ...... ① と表される。 直線 ① と放物線y=x2 の共有点のx座標は, 方程式 x2=m(x-1)+2 すなわち x2-mx+m-2=0 の実数解である。 この2次方程式の判別式をDとすると D=(-m)²-4(m-2)=m²-4m+8=(m-2)2+4 常に D>0 であるから, 直線 ① と放物線y=x2 は常に異なる 2点で交わる。 その2つの交点のx座標をα, β(α<β) とすると s=${m(x-1)+2-x*}dx=- = -√²₂(x²-₁ T 2-mx+m-2)dx =-f(x-a)(x-B)dx=1/12(B-α) また B-α= m+√√D m-√√√D -=√D=√(m-2)² +4 2 2 したがって, 正の数β-α は, m=2のとき最小で,このとき (B-α)も最小であり,Sの最小値は 1/12 (14)-1/30 adst 7-8-9 adot x2-mx+m-2=0の2つの解をα, β とすると よって ゆえに (B-a)²=(a+β)²-4aβ=m²-4(m-2)=(m−2)²+4 3₁ 点 (1,2)を通りに な直線と放物線y=x^ まれる図形はない。 よって x軸に垂直な直線は考えな てよい。 X=- 検討 β-αに解と係数の関係を利用 S=1/12 (B-4)において, (B-α)の計算は 解と係数の関係を使ってもよい。 a+β=m,aβ=m-2 (1,2) α, βは2次方程式 x²-mx+m-2-00 TS, mt√m²-4m+! 2 S=— (B—a)³= ¹ {(B—a)³²}* = = = {(m−2)² + 4) ³ ≥ — • 4³-4 6 m²-4m+8=D XD-M300 TIROMA

回答募集中 回答数: 0
数学 高校生

(2)教えて欲しいです (1)の答えの③のところを僕は-xでくくってx^2-x(m+2)x+1としました解と係数の関係よりα+βはこの場合-m-2/2になってしまいます間違いですか?

基礎問 74 第3章 図形と式 46 軌跡 (IV) -放物線y=x2-2x+1と直線y=mx について,次の問いに 答えよ. (1) 上の放物線と直線が異なる2点 P, Qで交わるためのmの範 囲を求めよ. 074-71865 線分PQの中点の座標をm で表せ. 1+tais: (3) が (1)で求めた範囲を動くとき, 点Mの軌跡を求めよ. 精講 „Aš 05/1| JW A +*(1+1) (1) 放物線と直線の位置関係は,連立させてyを消去した2次方程 式の判別式を考えます. $2121,02121- 異なる2点とかいてあるので, 判別式≧0 ではありません. (2) (1) 2次方程式の解がPとQのx座標ですが,mを含んだ式になるの で2解をα,βとおいて, 解と係数の関係を利用した方が計算がラクです. (3) (1)において,に範囲がついている点に注意します。 ま ( 45 III) ..m<-4, 0<m (2) ③ の2解をα, β とすれば, P(α, ma), Q(B, mβ) とおける. 解答 y=x²-2x+1①, y=mx② (1) ①,②より,y を消去して, ²-(m+2)x+1=0..... ③ ③は異なる2つの実数解をもつので、 判別式をDとすると, D>0 D=(m+2)2-4 であるから m²+4m>0 :. m(m+4)>0 このとき, M(x,y) とすれば, _a+ß _m(a+B) 2' 2 y=- ここで, 解と係数の関係より α+β=m+2 だから X= #TUKHOL -=mx (4) YA 0 覚えてい niy=mx P y=x2-2x+1 Vnie) M a 1 B DC

回答募集中 回答数: 0
数学 高校生

下部分の青でマークされている箇所が何故こうなるのか教えて頂きたいです!

■後 . (210) (x)=x+1の2つの質の和が2となるとき、kの依および2つの権 値を求めよ。 (x)=x+kx2+kx+1 より f'(x)=3x²+2kx+k 袋)が2つの悩をもつから、f(x)=0 は異なる2 つの実数解をもつ。 つまり、 f'(x)=0 の判別式をDとすると, D>0 である. 2=k-3k=k(k-3)>0 4 ......1 *), k<0, 3<k f(x)=0 つまり,3x2+2kx+k=0 の2つの解をα, B (α<B) とすると, 解と係数の関係より, B= k/² 3=-2/23k, af= a+B== 2つの極値の和f(a)+f(B) は, f(a) + f(B) = (a³+ka² +ka+1)+(B³+kß²+kß+1) =(a³+ß³)+k(a²+B²)+k(a+B) +2 =(a+B)³-3aß(a+B) +k{(a+B)²=2aß}+k(a+B) +2 大 +2 = /k³²-²3² k²+2 f(a)+f(B)=2より, 9 したがって,より,k=2127 9 このとき, f(x)=x+2x+ f'(x)=3x²+9x+ f'(x)=0 のとき, α<βより, a= f(x) の増減表は, 右のようになり x=α で極大値 x=β で極小値 をとる。 22/7 k³ - ²/3 k² +2=2 k²(2k-9)=0 x= 3x2+9x+ 2x2+6x+3=0 -3±√3 2 -3-√3 2 929-29-23 * -x+1 ・・・ -=0 B= Check! 練習 第6章 微分法 355 Step Up -3+√3 2 a xC f'(x) + 0 f(x) 大 ・・・ - B 0 極小 (B+x)=²x レース)(エース)(12つの極値の和が2 極大値と極小値をもつ 5305- 3 5 ここでf(x)=(2x+6.x+3)(1/2x+424) - 12/28/1/27 Xx 4 Q,Bは, 2x2+6x+3=0 の解だから, +== 2 c) (K) 20 SIS 10 AJ 0 6 f(x) を 2x2+6x+3で割る. 2a²+6a+3=0 22+6β+3=0 5 4+3√3 f(a)=-2a-5--3-3-√3- 4 4 4 (月)=-128-12--21-3+1/354-3/34/(8)=2(a)でもよい。 (B)-2 -B- 4

回答募集中 回答数: 0
数学 高校生

数IIです お願いします🙏

72 610 00000 基本例題 244- 面積の最大 最小 (1) 作用と飲作はソード"で囲まれる図形の面積をSとする 小値を求めよ。 指針点 (1,2) を通る直線の方程式は, その傾きをm とすると, y=m(x-1)+2と表される まず, この直線と放物線が異なる2点で交わるとき, 交点のx座標α, BSを表す が利用できる。 このとき,公式f'(x-a)(x-B)dx=1/(a-α) 6 更に,S を m の関数で表し,mの2次関数の最小値の問題に帰着させる。 解答 点 (1, 2) を通る傾きmの直線の方程式は y=m(x-1)+2 ....... ① と表される。 直線 ① と放物線y=x2の共有点のx座標は, 方程式 x2=m(x-1)+2 すなわち x-mx+m-2=0 の実数解である。 この2次方程式の判別式をDとすると D=(-m)²-4(m-2)=m²-4m+8=(m−2)²+4 常に D > 0 であるから, 直線①と放物線y=x2は常に異なる 2点で交わる。 その2つの交点のx座標をα, β (a <β) とすると s=Sm {m(x-1)+2-x2}dx=- =-f(xーmx+m-2)dx =-f(x-a)(x-B)dx=1/(B-α) _m+ √D _m-√D = √D=√ (m−2)²+4 2 また B-α=- したがって, 正の数β-α は, m=2のとき最小で,このとき (B-u)も最小であり,Sの最小値は 1/12 (14)=1/3 x2-mx+m-2=0の2つの解をα, β とすると よって (B-α)²=(a+B)2-4aß=m²-4(m-2)=(m−2)²+4 a YA y=x² (1,2), x= IS 点(1,2)を通り軸に垂 な直線と放物線y=x"で まれる図形はない。よって 軸に垂直な直線は考えなく てよい。 y=ms-1 <α, βは2次方程式 検討 β-αに解と係数の関係を利用 S=12 (B-α) において, (B-α)の計算は 解と係数の関係 を使ってもよい。 =1/(B- a+β=m, aβ=m-2 B x2-mx+m-2=0の解で »*1²=__=_s=—=— (B-a)² = — _ ((B-a)²³)³ = = = {(m − 2)² + 4)}²} ≥ 1/1 •4 ² = 1 {3} S= m± √√m²-4m+8 2 m²4m+8=D 練習 ③244 きが 2x+mであるという。 放物線y=f(x) と放物線y=-x²+4x+5で囲まれる mは定数とする。 放物線y=f(x) は原点を通り, 点 (x, f(x)) における接線の 図形の面積をSとする。 Sの最小値を求めよ。 p.382 EX19

回答募集中 回答数: 0