学年

質問の種類

数学 中学生

(3)の解き方教えてください!! 答えはA、B、D、E と C、D、E、F でした

5 図1のように, AB AC の鋭角三角形ABCがある。 図 1 次の(1)~(4) に答えよ。 B (1) 図1において, 点Aから辺BCへの 垂線を作図する。 図2は, 点Aを中心と して, △ABCと4点で交わるように 円をかき, その交点を,あ、い, うえと したものである。 C 図2 A 図2のあ〜えの点の中からどれか2点を P,Qとすることで,次の手順によって, 点Aから辺BCへの垂線を作図することが できる。 あ B い 手順 え C ① 点P,Qをそれぞれ中心として, 互いに交わるように等しい半径の円をかく。 2 ① でかいた2つの円の交点の1つをRとする。 ただし, 点Rは点Aとは 異なる点とする。 3 直線ARをひく。 このとき、点P,Qとする2点を、 図2のあ〜えから2つ選び, 記号をかけ。 また,手順によって, 点Aから辺BCへの垂線を作図することができるのは, 点Aと点P, 点Pと点R, 点Rと点Q, 点Qと点Aをそれぞれ結んでできる図形が, ある性質をもつ図形だからである。 その図形を次のア~エから1つ選び, 記号をかけ。 ア 直線ARを対称の軸とする線対称な図形 イ∠BACの二等分線を対称の軸とする線対称な図形 ウ点Aを対称の中心とする点対称な図形 エ点Rを対称の中心とする点対称な図形

回答募集中 回答数: 0
数学 中学生

□3問3の解き方を教えて下さいお願いします。

方形と円で囲まれてできる部分の面積XY をそれぞれ考えるとき, X=Yとなることを確 図4のタイルが縦と横にn 枚ずつ並ぶ正方形になるように、このタイルを敷き詰めて正 かめてみよう。 問2] [Sさんのグループが作った問題] , X, Yをそれぞれ4, n を用いた式で表し, X= yとなることを証明せよ。 ただし、円周率はとする。 右の図で、点Oは原点、点Aの座標は (12. 3 -2)であり、 直線1は一次関数y=-2x+14のグラフ を表している。 直線とy軸との交点をBとする。 直線上にある点をPとし, 2点A, Pを通る直線 次の各問に答えよ。 〔1〕次の中の 「え」 に当てはまる数字を答 えよ。 点Pのy座標が10のとき, 点Pのx座標は え である。 [問2] 次の①と②に当てはまる数を,下のア~ エのうちからそれぞれ選び,記号で答えよ。 点Pのx座標が4のとき,直線mの式は、 y=① 1x+1 (2) 1 [②] (2 ウエ2 ア 4 イ 58 エ10 〔3〕 右の図2は、図1において, 点Pのx座標が7 より大きい数であるとき, x軸を対称の軸として点 たいしょう Pと線対称な点をQとし,点Aと点B, 点と点Q 点Pと点Qをそれぞれ結んだ場合を表している。 △APBの面積と△APQ の面積が等しくなるとき, 点Pのx座標を求めよ。 1/12/ ア 1/1/20 イ 図 1 -10 図2 2021年 東京都 (15) -10 A -5 B +15 10+ 5 -5 O' -51 -10- ly B +15 110+ 5 of -10+ 5 5 +++++X 10 5 ++++++X 10 P m

未解決 回答数: 1
数学 高校生

この青で囲んだ部分のやつまじでどこから来たのかわかりません。どなたか教えてください

を 223 方 ワイ 増場 [2] a<1≤a+1 001のとき よって はx=1で最大となり M(a)=f(1)=4 次に2<α<3のとき, f(x)=f(a+1)とすると a³6a²+9a-a³ すなわ 2<a<3と5<√33/6に注意して 1.3.0.4+1 4+2² 1713! [3] 1≦a < のとき f(x)はx=αで最大となり 3a²-9a+4=0 _ −(−9) ± √ (−9)²—4•3•4 2.3 a= 9+√33 6 M(a)=f(a)=a³-6a²+9a 近いもの lid 以上から まちがた 9+√33 [4] ≦αのとき 6 f(x)はx=a+1 で最大となり M(a)=f(a+1)=α-3a²+4 u+1使える! [2]y 4 Q= [3]y [4] y 9+√33 a<0, 6 0≦a <1のとき M (α)=4 4F a+α+1)=3から 2 最大 9+√33 1≦a < 6 [3],[4] a≧3≦atlになる 9 土 O 1 3 a+1 9+√33 6 3次関数のグラフの対称性に関する注意 p.344 の参考事項で述べたように, 3次関数のグ ラフは点対称な図形であるが, 線対称な図形で はない。 すなわち, 3次関数がx=pで極値をと るとき 3次関数のグラフは直線x=pに関して 対称ではないことに注意しよう。 上の解答のαの値を 133 6 最大1 2 3 '3 a a+1 a+1 I x ●最大 La+1 a+1 x のとき M (a)=a²-6a²+9a 指針の② [区間内に極大 となるxの値を含み, そ のxの値で最大] の場合 。 ≦a のとき M (a)=a²-3a²+4 指針の⑧ [区間で単調減 少で, 左端で最大] また は ⑩ [区間内に極小とな るxの値がある] のうち 区間の左端で最大の場合。 9+√33 ex= 指針の① [区間内に極小 となるxの値がある] の うち、 区間の右端で最大 の場合、 または指針のA [区間で単調増加で,右 [端で最大] の場合。 3次関数の グラフ f(+1) 設定しろ! 対称ではない 放物線 PICZ (線) 対称 i=212としてはダメ! ] なお、 放物線は軸に関して対称である。 このことと混同しないようにしておこう。 357 dfl 最小値m(t) を求め 6章 3 最大値・最小値、方程式・不等式 ぐの E 委

回答募集中 回答数: 0