学年

質問の種類

数学 高校生

(2)解説の意味の意味理解できません 教えて欲しいです

して を作る を作る 12 bc² ac² b²a ba² a'c (a+c) l² + (a²+ C²) f + ac(n+c) 基本例題29 不等式の証明 (絶対値と不等式) 次の不等式を証明せよ。 (1) |a+b|≦|a|+|0| 解答 125 CHARTO SOLUTION L(1)(|a|+|6|²-la+b=(a+2|a||6|+|612)-(a+b)2 =a²+2|ab|+b²(a²+2ab+b²) =2(abl-ab)≧0 よって la+b1²(lal+160² Wa+b≧0,|a|+|6|≧0であるから lat6|≦|a|+|6| lal-lbsla-b 2(-al-al) 2 |a|≧|a-6|+|6| よって ゆえに |a|-|6|≦|a-6| [別解] [1] |a|-|6| < 0 すなわち |a| <|6| のとき よって (al-lb)² ≤la-b1² |a|-|6|≧0,|a-b≧0であるから lal-lb|≤la-bl 1-A² 似た問題 1 結果を使う ② 方法をまねる (1) 絶対値を含むので、このままでは差をとりにくい。 [A= A2 を利用すると, 絶対値の処理が容易になる。 よって、 平方の差を作ればよい。 (2) 不等式を変形すると |a|≦la-6|+|6|← (1) と似た形 そこで, (1) の不等式を利用することを考える。 ①の方針 別解 -lal≦a≦lal, -16|≦b≦bであるから 辺々を加えて -(|a|+|6|)≦a+b≦|a|+|6| |a|+|6|≧0であるから la+6|≦|a|+|6| (2) (1) の不等式の文字α を a b におき換えて ab30mm の |(a−b)+b|≤la-b|+|b| 2 (al-ab)= 左辺) < 0, (右辺)>0 であるから不等式は成り立つ。 [2] |a|-|6|≧0 すなわち |a|≧|6のとき 移 la-bp-(lal-lb)²=(a−b)²(a²-2|ab|+b²) =2(−ab+labl)≧0 -2al <0 al 20 0100000 M Ap.38 基本事項4. 基本 28 JAL a=-ch ( atc= a²+c² = -29% A <0 のとき =0 linf. A≧0 のとき -|A|≦A=|A| -|A|=A<|A| であるから,一般に -|A|≤A≤|A| 47 更に,これから ||A|-A≥0, |A|+A≥0 c≧0のとき -c≤x≤c⇒ x≤c x≤-c, c≤x x≧c 1章 4 等式・不等式の証明 ◆②の方針。 |a|-|6|が負 の場合も考えられるの で, 平方の差を作るには 場合分けが必要。 inf 等号成立条件 (1) は ① から, labl=ab, すなわち, ab≧0のとき よって, (2) は (a-b)≧0 ゆえに (a-b≧0かつb≧0) または (a-b≦0かつb≧0) すなわちab≧0 または a≦b≧0のとき。

解決済み 回答数: 1
数学 高校生

どのように考えたら線で引いたところの式が立てられるのか教えてください。

基本例題 32 式の大小比較 0<a<b, a+b=2のとき、次の4つの式の大小を比較せよ a² + b² a, b. ab, 2 → ab=2, 3 CHART & T HINKING 式の大小比較 数値代入などで大小の見当をつける 2式ずつ差を作って, a-b, a-ab, ・・・・・・の符号を調べればよいが, 全部 ( 4C2=6通り) 調 べるのは煩雑である。 そこで, 0<a<b, a+b=2 を満たすa, bを代入して4つの式の値 を求め,大小の見当をつけよう。例えば,a=212,b=12/23 を代入すると、どうだろうか? a² + b² 5 -2 となることから, 2 a<ab< [2] [3] この予想した不等式を2式ずつ差を作って大小比較する。 解答 a+b=2 から b=2-a 0<a< b から 0<a<2-a よって 0<a<1...... ① また [1] ① から a²+ b² 2 [2] ① から [3] ① から したがって <bと見当がつく。 ab=a(2-a)=-²+2a a²+ b² a²+(2-a)うち少なく -=a²-2a+2 2 2 ab-a=(-a²+2a) -a=-a²+a =-α(a-1)>0 a² +6² 2 b- (5+588-58). a² +6² + b² =(2—a)—(a²—2a+2) 2 =-a²+a=-a (a-1) > 0 a<ab<a²+b² -<b 2 800000 --ab=(a²-2a+2)-(-a²+2a) =2a²-4a+2=2(α²-2a+1) =(a-1)200)+(8+①から a=1 よって (a-1)^>0 $$30 見当を ③ 基本 27 つけて ←a+b=2は条件式。 条件式 文字を減らす →消去するbの条件 をαに残す。 -a<0 U ① から a-1 <0 ←la<0 55 ① から a-1 <0 1章 4 等式・不等式の証明

解決済み 回答数: 1
数学 高校生

なんで両辺にxyz(x+y+z)をかけるんですか?? 教えて頂きたいです!

重要 例題 34 「少なくとも1つは・・・」の証明 1 1 1 1 + + x y 2 x+y+z 1つは0であることを証明せよ。 CHART O OLUTION よって 証明の問題 結論からお迎えに行く まず結論を示すには,どんな式が成り立てばよいかを考える。 x+y,y+z, z+xのうち少なくとも1つは0である。) ⇔ x+y=0 または y+z=0 または z+x=0 ⇔ (x+y)(y+z) (z+x)=0 よって, * を証明すればよい。 1 1 + XC y 2 1 + 1 x+y+z 00000 であるとき, x+y,y+z, z+xのうち少なくとも [香川大〕 の両辺に xyz(x+y+z) を掛けると (4+5)-(1+0 (x+y+z) (yz+zx+xy)=xyz {x+(y+z)}{(y+z)x+yz}-xyz=0 (y+z)x2+(y+z)2x+yz(y+z)=0 (y+z){x2+(y+z)x+yz}=0 (y+z)(x+y)(x+z)=0 ゆえに y+z=0_または x+y=0 または x+z=0 したがって, x+y,y+z, z+xのうち少なくとも1つは0で ある。 ⇔(x-y)(y-z)(z-x)=0031-6 ② x,y,zの少なくとも1つは1に等しい MOITUTO INFORMATION 上の例題のように、結論から解決の方針を立てる考え方は大切で、証明の問題に限ら ず, 有効な方法である。 以下には、代表的なものを紹介しておく。 +1- ① x,y,zの少なくとも2つは等しい) (-- ⇔ (x-1)(y-1)(z-1)=0 ③実数x,y,zのすべてが1に等しい ⇔ (x-1)2+(y-1)+(z-1)^=0 PRACTICE・・・ 34 ④ a+b+c=1, - F 基本 24 xについての式と見て 計算する。 53 1 1 1 + + a b -=1 であるとき, a,b,cのうち少なくとも1つは1である C inson al 1章 等式・不等式の証明 91 [Z)] NIGE Call 4

未解決 回答数: 1
数学 高校生

数学数列  画像の四角で囲ったところのように変形するのはありですか?無しであればその理由を教えてください。

「つ」 306 308 数学的帰納法 〔3〕 ... 不等式の証明(2) 4以上の整数とするとき, 数学的帰納法を用いて次の不等式を証明せよ。 2" <n! 自然数nについての等式、不等式の証明は数学的帰納法を考える。 味の言い換え [1] n=4のときに ① が成り立つことを示す。 ( ① の左辺) (①の右辺) [2] 「n=kのときに ① が成り立つと仮定すると, n=k+1 のときにも ① が成り立つ」 ことを示す。 n=kのときの不等式 2 < h! が成り立つと仮定。 ⇒n=k+1のとき n=4 をそれぞれに代入して (左辺) (右辺) を示す。 (k+1)! -2k+1 = (k+1)k!-2k+1 > (k+1)-2+1 = ... > 0 仮定の利用 <<Action 数学的帰納法では,n=k+1 のときの式の複雑な部分に仮定の式を用いよ [1] n=4のとき (左辺) = 24 = 16, (右辺)=4!= 24 左辺) (右辺)であり, ① はn=4のとき成り立つ。 [2] n=k(k≧4) のとき, ① が成り立つと仮定すると 2<k! n=k+1 のとき (右辺) (左辺) (k+1)! - 2k+1 = = (k+ 1)k! - 2k+1 > (k+1)22k +1 =2^{(k+1)-2} k≧4であるから nは4以上の整数である。 =2(k-1) 2^(k-1)>0 2k+1 < (k+1)! よって ゆえに, ① は n =k+1 のときも成り立つ。 [1],[2] より,4以上のすべての整数nに対して成 り立つ。 4以上の整数について命 題が成り立つことを証明 する場合は,まず [1] と してn=4のとき成り 立つことを示す。 特訓 2 例題 306 (右辺) (左辺) > 0 を示 す。 仮定した不等式を用いる ためにk! をつくる。 (k+₁) £! - (2² > (E11) 21-1-2 (7-1) £! 308nが4以上の整数とするとき, 次の不等式を証明せよ。 3n > n³ ... 1 6章 化式と数学的帰納法 条件 k≧4 を忘れないよ うにする。 18 (宇都宮大) p.519 問題308 509

回答募集中 回答数: 0