学年

質問の種類

化学 高校生

eってどのように判断しますか?(NaClの気体が問に出てこないので) あとそれぞれのエンタルピーを出そうと思って写真のように考えてたんですけど、考え方は合ってますか?

思考 発展やや難 H=120C=120=16 283. 格子エネルギー■次の文を読み, (ア) には適切な語句, (イ), (ウ)には有効数字 3 桁の数値, (エ), (オ)には下記の選択肢から選んだ記号を答えよ。 塩化ナトリウムのイオン結晶の生成と溶解について,下の熱化学方程式をもとに考え る。①式から,NaCI(固)の(ア)エネルギーは +788kJ/molであることがわかる。 Na+ (気)が水和して Na+aq となる反応を⑦式に示した。 ヘスの法則を利用して ⑦式中 [k]を求めると(イ)kJ となる。 Cl2 (気)の結合エネルギーを244kJ/mol とする と, Na(気)の第1イオン化エネルギーは(ウ)kJ/mol となる。 以上から,下記の選択 肢の中で, エネルギー的に最も不安定な状態は(エ)で、最も安定な状態は(オ)で ある。 第1章 物質の変化と平衡 熱化学方程式 選択肢 NaCl (固) Na+ (気) +CI- (気) AH = +788kJ ... ① (a) Na+aq+Cl-aq CI (気) +e- → CI- (気) △H=-354kJ ... ② (b) Na (気) +CI (気) 1 (c) Na (固) +Cl2(気) NaCI(固) △H=-411kJ ...③ 2 (d) Na+ (気) +CI- (気) NaCl(固)+aq 02 Hin Na (固) Na(気) AH = +107k ... ④ (e) NaCl(気) NaCl (固) +aq CI- (気) +aq THOONM Na+ (気) +aq V 甲 Naaq+Cl-aq △H = +4.0kJ...⑤ → Cl¯aq △H=-364kJ ...⑥ Na+aq △H=x[kJ] ...⑦ (09 慶応義塾大改) 09

回答募集中 回答数: 0
物理 高校生

高校物理 75番の(3)と79番鉛筆で波線引っ張った部分の解説がわかりません。教えて欲しいです。

54 第1章 物体の運動とエネルギー 75 仕事率 重力加速度の大きさを 9.8m/sとして、次の仕事をそれぞれ求める (1) クレーン車が質量 2.0×102kgの物体を,一定の速さで35秒間に10m持ち上げ たときの仕事率 2) 自動車が1.5×10°Nの推進力で,一定の速さ 18m/s で走行したときの仕事率 773) 50kgの人が,1.0 分間に高さ12mの階段を一定の速度で上がったときの仕事 ヒント (3)この人は自分にはたらく重力に逆らって12m移動する。宝一高 ➡1 9102 運動エネルギーと仕事 図のように,斜面上に質量 76 3.0kg の台車を置き, 速さ2.0m/sですべらせたところ, ある時間が経過した後に, 台車の速さが6.0m/sになった。 この間に,台車にはたらく合力がした仕事はいくらか。 ➡2 77 ヒント 台車の運動エネルギーの変化) = (台車がされた仕事 ) 9/10 2.0m/s さ6.0m/s 18 ●運動エネルギーと仕事 質量 2.0×10-2kgの小球が, 厚さ 3.0kg # ST 2\m0.0.10m 0.10mの鉛直に固定された木材に,速さ 3.0×102m/s で水平に打ち こまれ、木材を貫通した直後に 1.0×10m/sの速さになった。 木材 の中を進む間, 小球は木材から一定の大きさの抵抗力を, 運動の向き と逆向きに受けるとする。 また, 重力の影響は無視できるものとする。 (1) 小球が木材を貫通するまでに、木材の抵抗力が小球にした仕事はいくらか。 T(2) 木材の抵抗力の大きさはいくらか。 OS ヒント (1) (小球の運動エネルギーの変化)=(小球がされた仕事 ) 223 ・木材 ➡2 NET 78重力による位置エネルギー 崖から10m上の塔の屋上には 質量 2.0kgの物体Aがあり, 崖から15m下の水面には質量面 4.0kgの物体Bが浮かんでいる。 重力加速度の大きさを 9.8m/s20 とする。 AQ 塔 10m 崖 (1) 水面を基準にとるとき, A,Bの重力による位置エネルギーは それぞれいくらか。 15m B (2) 崖を基準にとるとき, A, B の重力による位置エネルギーはそ れぞれいくらか。 -2 水面 79弾性力による位置エネルギー 図のように, 一端を壁 ヒント 重力による位置エネルギーは,基準のとりかたによって正にも負にもなる。 駐車 車 に固定したばね定数 3.0 × 102N/m の軽いばねの他端に物体 をつけて,この物体を水平方向に手で引く。 00000000 (1) ばねを自然の長さから10cm伸ばすとき, 物体がもつ弾性力による位置エネル ギーはいくらになるか。 また,このときに手が加えた力がした仕事はいくらか。 2)このばねをさらに10cm伸ばすとき、物体がもつ弾性力による位置エネルギーは いくらになるか。 また、このときに手が加えた力がした仕事はいくらか。 ➡2 ヒント 弾性力による位置エネルギーは, 弾性力に逆らって加えた力のした仕事に等しい。

回答募集中 回答数: 0
理科 中学生

(3)の解き方を教えてくださる方いませんか🙇🙌💭

34 第1章 身のまわりの物理現象 発展問題 ばねを利用したはかりを使って実験を行った。ただし、100gの物体にはたらく重力の大きさを (徳島) INとし, ばねの質量は考えないものとする。 あとの問いに答えなさい。 【実験】 ① 2000g用の台ばかりの側面の部分を開けて調べたところ、内部には、ばねが1本あった。 図1は、台ばかりのようすを模式的に表したもので、ばねの長さは13.5cmであり、針は0g を指していた。 図 1 図2 図3 台 歯車を回転 させる金具 F000000 13.5cm 針 0000000 針 1800g C1600g] 14006 1200g 600g 歯車 歯車 ばねと台をつなぐ金具 ばねと台をつなぐ金具 ②台ばかりの台に 500gのおもりを のせ、このときのばねの長さを調べた ところ, 14.0cm であった。 その後, おもりの質量(g) ばねの長さ(cm) 0 13.5 500 1000 1500 2000 14.0 14.5 15.0 15.5 おもりの質量をかえて,同様の実験を行った。 表は,その結果をまとめたものである。入 ③ ばねを台ばかりからとり外し、ばねに力が加わっていないときのばねの長さを測定したとこ ろ, 12.5cmであった。 実験で使った台ばかりを、 図2は横から,図3は前から見て、そのしくみの一部を模式的に 表したものである。このばねは,上端が固定され、下端は上下に動く金具とつながっている。 このばねがのびると, 図3のように歯車を回転させる金具が下がり, 針が回るようになっている (1) 図2のように,台ばかりの台に何ものせていないときにも、図4 台や金具の重力が, ばねにはたらいている。 台ばかりの台に 何ものせていないとき, ばねにはたらいている力の大きさは 何Nか。 [ ] 14.0 (2)表をもとに,台にのせたおもりの質量と, ばねののびとの 関係を表すグラフを図4にかきなさい。 ただし, ばねののび はばねに力が加わっていないときのばねの長さからののび とする。 ばねののび ば3.0 2.0 [cm] 1.0 0 (3)図5は1000g用の台ばかりの目盛りの一部を示している。 実験で使った台ばかりの目盛りを図5の目盛りにし、さらに ばねをかえて1000g用の台ばかりをつくることにした。その ためには、台に何ものせていないときに針が0g を指し,台 に1000gのおもりをのせたときに針を360°回転させるばね が必要である。このばねに力が加わっていないとき, ばねの長さは何cmか。 ただし、目盛り 0 1kg 100g 900g 0 500 1000 1500 200 台にのせたおもりの質量[g] 図5 ばね以外の条件は変えないものとする。 [

回答募集中 回答数: 0
化学 高校生

化学  (4)の問題について 6.0×10^23を4で割るのはどうしてですか?

リードC 基本例題 2 塩化ナトリウムの結晶 塩化ナトリウムの結晶の単位格子を図に示した。 (1)単位格子に含まれる Nat, Cl の数はそれぞれ何個か。 (2)1個のNa+の最も近くにあるCI-は何個か。また,中心 間の距離は何 nm か。 3 1 個の Na+の最も近くにある Na+ は何個か。 また, 中心 間の距離は何 nm か。2=1.4,√3=1.7 とする。 (4) 1molの塩化ナトリウムの結晶の体積は何cmか。 アボガドロ定数=6.0×102/mol,5.63=176 とする。 第1章 固体の構造 95 7 解説動画 CI Na |- 0.56nm||| (5) 塩化ナトリウムの結晶の密度は何g/cm か。 Na=23, Cl=35.5 とする。 脂針 NaCl の結晶では, Na と CI が接していて, Na+ どうし, CI どうしは接していない。 1nm=10m=10-7cm 解答 (1) Na (●) 1×12 (辺の中心) +1(中心)=4 (個) 圏 CI¯ (0): ×8(頂点)+1/2×6(面の中心)=4 (個) 圄 (2) 立方体の中心のNa+ に注目すると, C1- は上下, 左右, 前後に1個ずつの計6個答 中心間の距離は一辺の長さの1/2で0.28mm 圏 (3) 立方体の中心の Na+ に注目すると, Na+ は立方体の各辺の中心の計12個 答 中心間の距離は面の対角線の1で0.56mm×√2×12=0.392nm≒0.39mm 圏 面の対角線の長さ (4) 単位格子 (Na+, CI がそれぞれ4個ずつ)の体積が (0.56nm)=(5.6×10cm)3 なので, 1mol (Na+, CI がそれぞれ 6.0×1023個ずつ) の体積は, (5.6×10 - cm)x- 6.0×1023 176×6.0×10 -1 ・1 cm=26.4cm≒26cm 答 4 (5)密度=質量 58.5 g 体積 =2.21... g/cm≒2.2g/cm 答 26.4cm3 1 基本問題 133 必解

回答募集中 回答数: 0
生物 高校生

問2について。 解説には1〜3の全てに共通している4が父親であり、と書いてあるのですが、3も全部に共通していませんか ?なぜ4だと特定しきれるのでしょうか。

2.すべて当てはま 黒 ずれも当てはまらない 252. DNA型鑑定 次の文章を読み, 以下の各問いに答えよ。 「真核生物のゲノム中には塩基配列がくり返された部分(反復配列)があり、この領域を調 べることで個体の識別を行うことができる。このようなことが可能なのは、反復配列のく り返し回数が、家系間や品種間で異なっており, 生殖の際に変化することなく、親から子 遺伝するためである。 ある哺乳類の親子関係を調査する ために、3か所の反復配列1~3を 含む DNA 領域をPCR法で増幅し、 それぞれ電気泳動法で解析した際の 結果を右図に示した。右端は子から 採取したDNAの解析結果,1~5 および 6~10はそれぞれ父親候補お よび母親候補の個体から採取した DNAの解析結果である。 ただし 子の解析において観察された2種類 のDNA断片は,それぞれ父親およ び母親に由来する DNA を増幅する ことによって得られたものであり, 両親は1~5および 6~10のなかに 必ず存在するものとする。 反復配列・ 父親候補 母親候補 子 1 2 3 4 5 6 7 8 9 10 第1章 遺伝子を扱う技術とその応用 DNAの移動方向 反復配列2 反復配列3 ゲノムの個体差を利用して個体を識別する方法を何というか。 図の右端に示された子の両親は,何番と何番の組合せだと考えられるか答える

回答募集中 回答数: 0
数学 高校生

(1)ではなぜ余りの部分をax²+bx+c にしないのかと、途中の式変形を教えていただきたいです。 (2)ではなぜ3k,3k+1,3k+2と場合分けしているのかを教えていただきたいです。

28 第1章 式と証明 問 9 整式の割り算(3) m, nは正の整数とする。 (1) 3m +1 を 1 で割ったときの余りを求めよ。 (2) +12+x+1で割ったときの余りを求めよ。 これは=0 (n (室蘭工業大) 以上より、 + n=3k(k → 精講 (2) (1)において -1=(x-1)(x2+x+1) より, n=3kのとき は、処理済です. あとは, n=3k+1,3k+2 と場 合分けして調べていきましょう. (1) cam=(x3-1+1)^ = (X+1)" とみて展開 (1) まずは3m を -1で割るこ解法のプロセス とを考えます. n=3k+1 n=3k+2 (2)n=3k, 3k+1, 研究 (2) 3k+2 と場合分けする 解答 (1) x3m+1=(x3)"+1=(x-1+1)"+1 X=x-1 とおいて二項展開すると x3m+1= (X+1)"+1 ={(Xの1次以上の整式)+1}+1 =X(Xの整式)+2 =(-1) (zの整式) +2 よって, x3m+1 を-1で割った余りは 2 (2)(1) より が正の整数のとき これは 二項定理より た余り (X+1)m =mCoX™•10+mCiX~1.14+ この ...+mCmX1" すなわ よい 3k+1=(x-1)(x の整式) +2 である. =(x-1)(x²+x+1)Q(x)+2 (Q(x)はxの整式) n=3k のとき, "+1 を x'+x+1 で割った余りは2である. n=3k+1 のとき,①の両辺にxをかけて, 変形すると 3k+1+x=(x2-x)(x²+x+1)Q(x)+2x 3k+1=(x2-x)(x²+x+1)Q(x)+m ・② 3k+1+1=(x2-x)(x'+x+1)Q(x)+x+1 これはk=0 (n=1) のときも成り立つ. n=3k+2 のとき,②の両辺にxをかけて, 変形すると mak+2=(x-x2)(x'+x+1)Q(x) +x m3k+2+1=(x-x2)(2+x+1)Q(x)+x2+1 =(x-1)(x'+x+1)Q(x)+(x²+x+1)-x で

回答募集中 回答数: 0