学年

質問の種類

数学 高校生

この問題の解答の❗️においてnが5以上なのはf1(x)というのが定義されてないからですか? また、そういう時に勝手にf(x)=f1(x)とするみたいなのは書いてはいけないのでしょうか?

ついて整理 重要 例題100 分数関数をn回合成した関数 x=1,x=2のとき, 関数 f(x)= 2x-3 x-1 f(x)=f(f(x)), fa(x)=f(fz(x)), ....., このとき, fz(x), f(x) を計算し, fn(x) [n≧2] を求めよ。 解答 指針 fn(x) を求めるには, fz(x), f(x), この問題では, (fofr)(x)=x, つまり fari(x)=x [恒等関数] となるものが出てくるから、 と順に求めて、その規則性をつかむ。 fn(x)はx, f(x), fz(x), ......, fn(x) の繰り返しとなる。 なお, fz(x), f(x), と順に求めた結果, fn(x)の式が具体的に予想できる場合は, 予想したものを数学的帰納法 (数学B) で証明する。という方針で進めるとよい (→下 の練習 100)。 f(x)=f(f(x))=2f(x)-3 よって f(x)-1 _2(2x-3)-3(x-1) 2x-3-(x-1) fs(x)=f(fz(x))= 2・ x-3 x-2 x-3 x-2 2(x-3)-3(x-2) x-3-(x-2) = = -1 について, -3 2. =x n=3mのとき fn(x)=x; fn(x)=f(fn-1(x)) [n≧3] とする。 基本 98 2x-3 x-1 2x-3 x-1 x-3 x-2 程式 6 ◯方が多い。 いて, a.ko ることができ 値が⑤.⑥t 忘れずに観ゆえに,fn(x)=fn-3(x) [n≧5] が成り立つ。 すなわち, m を自然数とすると f(x)=f(f(x))=f(x), f(x)=f(f(x))=f(f(x))=fz(x), f(x)=f(fs(x))=f(fz(x))=f(x), --3 -1 n=3m+1のとき fn(x)=2x-3; x-1 n=2,3m+2のとき fn(x)=x-3 x-2 171 分母・分子にx-1 を掛け る。 分母・分子にx-2 を掛け る。 恒等関数。 f(x)=f(x), f(x)=fz(x), f(x)=f(x), 3章 3 逆関数と合成関数 の関数f(x)=ax+1 (0<a<1) に対し, f(x)=f(x), fz(x)=f(fi(x)), 13 f(f(x)) [n≧2] とするとき, fn(x) を求めよ

回答募集中 回答数: 0
数学 高校生

積分の体積の問題です 黄色マーカーで引いたところの解説をお願いします

基礎問 226 123 回転体でない体積(ⅡI) 2⑦ 次の問いに答えよ. 12 (1) 定積分 1fpdt を求めよ。 (2) 不等式 z'+y2+log (1+22) log2 ......(*) で表される立体Dにつ いて (ア) 立体Dを平面 z=tで切ることを考える. このとき, 断面が存在 するような実数十のとりうる値を求めよ. (イ)(ア)における断面積をS(t) とする. S(t) をtで表せ. 立体Dの体積Vを求めよ. (ウ) 第6章積分法 精講 (1) 分数関数の定積分は,次の手順で考えます。 ① 「分子の次数<分母の次数」 の形へ ② f(x) ③②の形でなければ、 分母の式を見て 因数分解できれば, 部分分数分解へ (89 因数分解できなければ, tan0の置換を考える (90) (2) 立体Dの形が全くわかりませんが, 122 によれば断面積を積分して求めら れます。 だから立体の形がわからなくても、断面積が求まれば体積は求めら れるのです.そのときの定積分の式を求める作業が(イ)で, 定積分の範囲を求 める作業が(ア)になっています。 1+t2 "'(x) 解 答 (1) Softpdt=f'(1-14ps) at=1-So1tradt 1+t2 ここで, Softpdt において,t=tan0 とおくと 90(1) = S₁³ do = 7 4 -dxの形を疑う (89) 1+t2 t0→1 dt TL 1 do 00-E docosey だから、∫otpad="1+lando cos2d よって,Strat=1- 1+t2 π (2) (ア) (*) z=t を代入して ²+y² ≤log2-log(1+t²) ......① この不等式をみたす実数工、リが存在するこ これが断面が存在す とから, るということ log2-log (1+t²) ≥0 2≥1+t² = 1²≤1 " -1≤t≤1 立体Dの平面 z=t (-1≦t≦1) による断面はxy平面上の不等 式①で表される図形で,これは (半径) が log2-10g(1+1)の円の (イ) 周および内部を表すので 22² +7² {/² S(t)=z{log2-log(1+t)} (→) V=r{log 2-log(1+t²)}dt =2zf"{log2-10g(1+t)}dt =2zlog2-2x(t)'log(1+t)dt =2xl0g2-2x|tlog(1+t)+ 25 24 psdt 21² =4nf1+₁ dt-4(1-4)=(1-x) 4π 1+t2 2 ポイント 演習問題 123 ◆これが z=tで切る ということ 227 <S(t) は偶関数 87 (1) 部分積分 2 注∫_{log2-log(1+t^2)}dt = f_log1fFdtと変形してしまうと 定積分は厳しくなります。 回転体でない体積の求め方は I. 基準軸をとって ⅡI. 基準軸に垂直な平面で切ってできる断面の面積 を求めて ⅢI.ⅡIの断面積を積分する y≧0≦z≦1で表され 4つの不等式x+y-z, る立体Dについて,次の問いに答えよ. (1) 立体Dの平面 z=t による断面の面積S(t) をtで表せ. (2) 立体Dの体積Vを求めよ. 79 第6章

回答募集中 回答数: 0
数学 高校生

一対一ですが、(3)は一体なぜ訳の分からないことをしているんですか? 普通にh(x)=yと置いて代入してyについて解けば良くないですか? 何がダメなんですか?

3次分 [ g(x)=- また,分数関数h(x) が, h(x) キー 3 h(x)=(3) となる. f(x)= 34 ■解答量 2x+1 3x+1' (1) g(f(x))=- (2) f(g(x))= 4・ 2x+1 3x+1 (ad は実数の定数) の形の関数を1次分数関数という. 1次分数関数とは 合成関数 合成関数g (f(x)) を求めるときは,g(x)のxをf(x) にしたものを計算すればよい。 g (f(x)) は, gof (z) または (gof) (z) と書くことがある. g (f(x)) とf(g(x))は一般に異なる関 数である (一致することもある). f(x), g(x) が1次分数関数のとき,g (f(x)), f(g(x)) は1次分 数関数になる。(ここでは,便宜上, 1次関数なども1次分数関数に含めている) 逆関数について 1次分数関数の逆関数は1次分数関数になる. また,一般に, f(x) の逆関数を f(x) とすると,f'(f(x))=x, f(f-1(z)) =πである. 5. 2. 2x+1 3x+1 2x+1 3x+1 4x+2 5x+1 4x+2 5x+1 ax+b cx+d - +2 4.x+2 とすると,g(f(x))=(1) 5x+1 ・+1 +1 1 - となるæに対して, f(h(x))=xを満たすとき, 4(2x+1)+2(3x+1) 5(2x+1)+(3x+1) 2(4x+2)+(5x+1) 13x+5 3(4x+2)+(5x+1) 17x+7 3. +1. (3) f(x) の逆関数をf-l(x) とする. f-if(h(x)))=f-1 (x)より, h(x)=f''(x) である. -=yとおいて』をyで表すと, 2x+1=y (3x+1) より (3y-2) x=-y+1 [xとyを入れかえて] h(x)= .. x= -x+1 3x-2 14x+6 13x+6 y+1 3y-2 03 演習題 (解答は p.41 ) -1<x<1 を定義域とする関数f(x)=エーカ 1-px' fq(x)= x-q 1-qx -1<g<1) について,次の問いに答えよ. (1) 定義域内のすべてのxに対して, -1<f(x) < 1 を示せ . 1-rx (2) 定義域内のすべてのに対して, fs (f(x))=エー (−1 <p < 1, y-p1 を用いて表し,-1<x<1を示せ.ただし,f, (f(x)) はfp(y)=1 1-by y=f(x) を代入したものを意味するものとする。 (3) 定義域内のすべてのに対して, fp(f(x))=f(x) を満たすを求めよ. (eb th 」となる。 (山梨大・ この問題では、定義域は考えなく てよい。 (1)と(2) は異なる. を満たすとき,rをpとq 医一後 この式を省略し, f(h(z)) =z だからん(x)=f''(r) と書いて もかまわないだろう. 1 h(x)=-- + h(x)=-- 1 3 3(3x-2) 3 して より (これが値域) (1) f(x) +10と 1-f₂(x) >0. (2) (f(x))を計算 IⅠの形にする。 1-n ¡(3) x=(

回答募集中 回答数: 0
数学 高校生

一対一ですが、(3)は一体なぜ訳の分からないことをしているんですか? 普通にh(x)=yと置いて代入してyについて解けば良くないですか? 何がダメなんですか?

3次分 [ g(x)=- また,分数関数h(x) が, h(x) キー 3 h(x)=(3) となる. f(x)= 34 ■解答量 2x+1 3x+1' (1) g(f(x))=- (2) f(g(x))= 4・ 2x+1 3x+1 (ad は実数の定数) の形の関数を1次分数関数という. 1次分数関数とは 合成関数 合成関数g (f(x)) を求めるときは,g(x)のxをf(x) にしたものを計算すればよい。 g (f(x)) は, gof (z) または (gof) (z) と書くことがある. g (f(x)) とf(g(x))は一般に異なる関 数である (一致することもある). f(x), g(x) が1次分数関数のとき,g (f(x)), f(g(x)) は1次分 数関数になる。(ここでは,便宜上, 1次関数なども1次分数関数に含めている) 逆関数について 1次分数関数の逆関数は1次分数関数になる. また,一般に, f(x) の逆関数を f(x) とすると,f'(f(x))=x, f(f-1(z)) =πである. 5. 2. 2x+1 3x+1 2x+1 3x+1 4x+2 5x+1 4x+2 5x+1 ax+b cx+d - +2 4.x+2 とすると,g(f(x))=(1) 5x+1 ・+1 +1 1 - となるæに対して, f(h(x))=xを満たすとき, 4(2x+1)+2(3x+1) 5(2x+1)+(3x+1) 2(4x+2)+(5x+1) 13x+5 3(4x+2)+(5x+1) 17x+7 3. +1. (3) f(x) の逆関数をf-l(x) とする. f-if(h(x)))=f-1 (x)より, h(x)=f''(x) である. -=yとおいて』をyで表すと, 2x+1=y (3x+1) より (3y-2) x=-y+1 [xとyを入れかえて] h(x)= .. x= -x+1 3x-2 14x+6 13x+6 y+1 3y-2 03 演習題 (解答は p.41 ) -1<x<1 を定義域とする関数f(x)=エーカ 1-px' fq(x)= x-q 1-qx -1<g<1) について,次の問いに答えよ. (1) 定義域内のすべてのxに対して, -1<f(x) < 1 を示せ . 1-rx (2) 定義域内のすべてのに対して, fs (f(x))=エー (−1 <p < 1, y-p1 を用いて表し,-1<x<1を示せ.ただし,f, (f(x)) はfp(y)=1 1-by y=f(x) を代入したものを意味するものとする。 (3) 定義域内のすべてのに対して, fp(f(x))=f(x) を満たすを求めよ. (eb th 」となる。 (山梨大・ この問題では、定義域は考えなく てよい。 (1)と(2) は異なる. を満たすとき,rをpとq 医一後 この式を省略し, f(h(z)) =z だからん(x)=f''(r) と書いて もかまわないだろう. 1 h(x)=-- + h(x)=-- 1 3 3(3x-2) 3 して より (これが値域) (1) f(x) +10と 1-f₂(x) >0. (2) (f(x))を計算 IⅠの形にする。 1-n ¡(3) x=(

回答募集中 回答数: 0