学年

質問の種類

物理 高校生

2番の問題が分かりません

流れの速さが2.0m/sのまっすぐな川がある。 この川を、静水上を4.0m/sの速さで進む船で 移動する。 (1) 同じ岸の上流と下流にある. 72m離れた点A と点Bをこの船が往復するとき,上りと下り 2.0m/s 72 m m/s だからな= 2.0m/s 0 A に要する時間t [S], t2 [s] をそれぞれ求めよ。 (2) この船で川を直角に横切りたい。 へさきを向けるべき図の角0の値を求めよ。 (3) (2) のとき, 川幅60mを横切るのに要する時間 t [s] を求めよ。 0.8 60 2.0×√3 END 10 151 1 指針 (2) 船 (静水上) の速度と川の流れの速度の合成速度の向きが,川の流れと垂直になればよい 解答 (1) 上りのときの岸に対する船の速度は [注]川を横切る船は, へさきの向きとは 異なる向きに進む。 RE) B→Aの向きに 4.0+(-2.0)=2.0 72 -=36s 2.0 (3) 合成速度の大きさを v[m/s] とすると, 下りのときの岸に対する船の速度は A→Bの向きに 4.0+2.06.0m/s 72 だから t2=- -=12s 6.0 (2) 船が川の流れに対して直角に進むの で, 右図のように, 船 (静水上) の速 度と川の流れの速度の合成速度が, 川の流れと垂直になる。 ここで, △PQR は辺の比が1:2:√3の直 角三角形である。よって 0=60° 4.0m/s An 160m t== PABRAN ここで.√3=1.73 として t=10×1.73=17.3≒17s 2.0×3 60° 60% 直角三角形の辺の比より v=2.0×√3m/s この速さで 60mの距離を進むので 60×√3 =10√3s √3 V P 2.0m 注√3=1.732・・・ や、 √2=1414・・・ の値は覚えておこう。

未解決 回答数: 1
数学 高校生

例題60で 最後らへんで これはCA🟰BAではなくないですか? 比が等しいと言っているだけと思ったのですが、、💦 何故か分からないので教えて欲しいです

二等分 の外角 DEの 基本 64 5 基本例題 60角の二等分線と比の利用 00000 「Eとする。 DE // BC ならば, AB AC となることを証明せよ。 △ABC の ∠C, ∠B の二等分線が辺AB, AC と交わる点を,それぞれD, CHARTO SOLUTION 平面図形の証明問題 条件を明確にする 平面図形の証明問題では,問題文の平面図形に関する 用語・記号を四角で囲むなどして、 解法の方針を見つ けやすくする。この例題では, ZB の二等分線, ∠Cの二等分線 定理1(三角形の角の二等分線と比) DE//BC ⇒ 平行線と線分の比 を利用して, AB=AC を示す。 直線 CD は ∠Cの二等分線であるから ・① AD: DB=CA: CB ...... 直線BE は ∠B の二等分線であるから AE: EC=BA : BC.∵ 一方, DE // BC であるから ②④から ①③から AD: DB=AE: EC・・・ |CACB=AE: EC CA: CB=BA: BC ...... したがって CA=BA すなわち AB = AC CACB=BABC (4) (1) A B (2) B (3) B A E C C A (0) E B p.325 基本事項 2 D A E (線分比) =(三角形の2辺の比) ◆CA: CB=BA: BC ↑同じ辺 INFORMATION 平面図形の証明問題を解く手順 ① 問題文の平面図形に関する用語・記号を四角で囲む。 ②与えられた条件をもとに図をかく。 場合によっては補助線を引く。 1③ 注意 証明の中で新たにつけ加える線分や直線のことを補助線という。 四角で囲んだ用語 記号から, 適用できる定理がどれなのかを考える。 そして, 図を参照しながら、式を立てる。 187509GRO BAZ Not 329 3章 7 三角形の辺の比,外心,内心、重心

回答募集中 回答数: 0
数学 高校生

ここの単元での証明苦手なんですが、ポイントとかってありますか、??🙇‍♀️

AB=8,BC=6,CA=4である△ABCにおいて,∠Aの二等分線と辺 ーマ 38 角の二等分線と比(1) 標 準 する。 このとき, BD, BE の長さを求めよ。 BCとの交点をD, ∠Aの外角の二等分線と辺BCの延長との交点をEと え方 BD: DC=AB: AC, BE: EC=AB: AC となることを利用。 ADは∠Aの二等分線であるから BD: DC=AB: AC=8:4=2:1 2 2+1 -BC= -×6=4 答 よって BD= 3 AEは∠Aの外角の二等分線であるからB BE: EC=AB:AC=2:1 よって, BE: BC=2:1 となるから 12 三角形の辺の比 159 よって 8 6 D 分線と辺BCとの交点をD, ∠Aの外角の二等分線と辺BC の延長との交 練習 112 AB=6,BC=5, CA=4である△ABCにおいて,∠Aの二等 点をEとする。このとき, BD, BE の長さを求めよ。 ...... 4 BE=2BC=2×6=12 答 テーマ 39 角の二等分線と比(2) △ABCの辺BCの中点をMとし, ∠AMB と ∠AMCの二等分線が辺 応用 AB, AC と交わる点をそれぞれD, E とする。 このとき, DE // BCである ことを証明せよ。 考え方 DE // BC を証明するには, AD: DB=AE: EC を示せばよい。 解答 △AMB において, MD は∠AMB の二等分線で MA: MB=AD: DB あるから △AMCにおいて, ME は ∠AMCの二等分線で MA: MC=AE: EC あるから MBMC であるから、①,②より AD: DB=AE: EC DE // BC終 B M E 第2章 図形の性質 113 △ABC の ∠B, ∠Cの二等分線が辺AC, AB と交わる点をそ これぞれE, D とする。 DE // BC のとき, △ABCは二等辺三角形であるこ ETAA++ +

回答募集中 回答数: 0