学年

質問の種類

数学 高校生

マーカーを引いた部分がよく分かりません 詳しく教えていただけると有難いです💦

基礎問 68 第3章 いろいろな関数 40 逆関数 f(x)=ax-2-1 (a>0.22)とするとき、次の問いに答えよ。 ((1) y=f(x)の逆関数 y=f(x) を求めよ。 エーエ (2) 曲線 C:y=f(x) と曲線 C2y=f-' (z) が異なる2点で交わる ようなαの値の範囲を求めよ. (3) C1, C2 の交点のx座標の差が2であるとき, αの値を求めよ。 精講 〈逆関数の求め方〉 y=f(x) の逆関数を求めるには,この式を x=(yの式)と変形し,xとyを入れかえればよい 〈逆関数のもつ性質> Ⅰ. もとの関数と逆関数で, 定義域と値域が入れかわる Ⅱ. もとの関数と逆関数のグラフは,直線 y=x に関して対称になる 逆関数に関する知識としてはこの3つで十分ですが,実際に問題を解くとき 〈逆関数のもつ性質〉を上手に活用することが必要です。この基礎問では,IIが ポイントになります。 解答 (1) y=√ax-2-1 とおくと, √ax-2=y+1 リーェに で交わる ry-f よって すな 範囲 求め そこ この (3) よって, y+1≧0 より, 値域はy≧-1 ここで,両辺を2乗して 大切!! ax-2=(y+1)2 . x=11 (y+1)²+² (y≥−1) a よって、f(x)=1/2(x+12+2/2/(x-1) a a 【定義域と値域は入れ かわる 注 「定義域を求めよ」 とはかいていないので, 「x≧-1」は不要と思う 人もいるかもしれませんが,xの値に対して」を決める規則が関数で すから、xの範囲, すなわち, 定義域が「すべての実数」でない限り は、そこまで含めて 「関数を求める」 と考えなければなりません. (2) y=f(x)とy=f(x)のグラフは,凹凸が異なり,かつ,直線 253

回答募集中 回答数: 0
数学 高校生

解説の波戦引いたところなんでそうなるんですか🙇‍♂️ 引き算やからbの2乗の値によるんじゃないんですか?

〔1〕 関数f(x)=ax2 + bx + c について,y=f(x)のグラフをコンピュータ トを用いて表示させる。ただし、このコンピュータソフトでは、 じゅうぶん は十分に広い範囲で変化させられるものとする。 a. b. 2024年度 数学Ⅰ/本試験 67 (2) 次の操作 A. 操作 B. 操作 Cのうち,いずれか一つの操作を行う。 の部分と1<x<0の部分のそれぞれと交わる, 上に凸の放物線が表示 a,b,c の値をそれぞれ定めたところ, 図1のように, x軸の2くく STAIN 18.0 れた。 $100.0 PORLA BA+ 2008 20 18620 2100.0 操作 A 図1の状態からb.cの値は変えず, aの値だけを減少させる。 操作B 図1の状態からacの値は変えず,bの値だけを減少させる。 操作C 図1の状態からa, bの値は変えず, c の値だけを減少させる。 このとき、 操作 A, 操作 B. 操作 Cのうち 5 「不等式f(x)の解が、すべての実数となること が起こり得る操作は キ また 方程式f(x)=0は異なる二つの正の解をもつこと が起こり得る操作は ク rece.0 腰につ -1 0 2 3 4x ク の解答群 (同じものを繰り返し選んでもよい。) 2020 43112 19:0 2800.0 O ない ① 操作 A だけである 020 0108.0 020 ② 操作 Bだけである 586.0 T0 818.0 ③ 操作 Cだけである ATLA 00000 0002 0 (1) 図1の放物線を表示させる a,b,cの値について 操作 A と操作 Bだけである 0212.0 0 9023.0 ア 0. b 0. C ウ 0. b2-4 ac 0. 4a-2b+cl オ 0. a-b+c 0 ⑤ 操作 A と操作 Cだけである ⑥ 操作 B と操作 Cだけである 操作 A と操作 Bと操作 Cのすべてである である。 900 08.0 ager.o 8182.0 8108.0 0385.0 00 rara.o ア カ の解答群(同じものを繰り返し選んでもよい。) 図 813.0 0 ① COUT 2 08.0 Trot.o

回答募集中 回答数: 0