学年

質問の種類

数学 高校生

この問題のf(x)の増減表は何のために求めているのですか?

基本 例題 155 曲線 F(x, y) = 0 と面積 良介 曲線 2x2+y+y2=1 によって囲まれた部分の面積Sを求めよ。 .88 CHART & SOLUTION 曲線 F(x, y) = 0 と面積 y=(x の式)と変形したグラフを考える 重要 88, 基本 152 与えられた曲線の方程式を y=f(x)の形に変形し、定義域や増減を調べてグラフをかく。 対称性も利用する。 [注意]x軸対称: f(x, -y)=f(x, y) 軸対称: f(x,y)=f(x,y) 原点対称: f(-x, -y)=f(x, y) 解答 2x2+2xy+y2=1から y2+2xy+2x2-1=0 80-1200-1 yについて解くと y=-x±√x2-(2x2-1) =-x±√1-x2 015030020 f(x)=-x+√1-x2, g(x)=-x-√1-x2とする。 1-x2≧0 であるから, f(x) g(x)の定義域は √1-x2+x -2x f'(x)=-1+ 2√1-x2 f'(x) =0 とすると √1-x2=-x 両辺を2乗して 1-x2=x2 よってx=±1/1 ① yについて整理し,解の 公式を用いて解く。 a (1200-1)D=x (1-x2)={(1-x2)/2 =1/2(1-x2)-12(1-2) 10 ① を満たすものは x=-- √2 f(x) の増減表は右のようになる。 また g(-x)=-(-x)-1-(-x)^ x -1 f'(x) √21 + 0 1 極大 f(x) 1 > > √2 -1 247 =x-√1-x2=-f(x) thaia よって, y=f(x) のグラフと y=g(x) のグラフは原点に 関して対称であるから, 曲線の概形は,図のようになる。 定義域内では,f(x)≧g(x) であるから, 求める面積Sは S=S_{f(x)-g(x)dx=21-xdx. -x21 Sixx は、半径1の円の面積の1/2を表すから S=2.12- =π 2 y=f(x)2 -1 0 Caar -17 とで 1 で表し 1 y=g(x) x

解決済み 回答数: 1
数学 高校生

数II 微分 この問題の答えが私が解いた答えと合わないのですが、なぜ答えのようにならなくてはいけないのかわかりません。赤線引いたところが間違えたところです。 教えていただきたいです🙇‍♀️

356 重要 例題 224 区間に文字を含む3次関数の最大・最小 f(x)=x-6x2+ 9x とする。 区間 a≦x≦a+1 における f(x) の最大値 求めよ。 指針 この例題は, 区間の幅が1 (一定) で, 区間が動くタイプである。 00000 M() を 基本200 まず, y=f(x) のグラフをかく。次に, 区間 a≦x≦at1をx軸上で左側から移動し ながら, f(x) の最大値を考える。 場合分けをするときは,次のことに注意する。 A 区間で単調増加なら, 区間の右端で最大。 区間で単調減少なら, 区間の左端で最大。 両極値をとるxの値がともに区間に含まれることはないから © 区間内に極大となるxの値があるとき,極大となるxで最大。 >0 (8) 区間内に極小となるxの値があるとき, 区間の両端のうちf(x)の値が大きい方 で最大→区間の両端で値が等しくなる場合が境目となる。 すなわち f(x)=f(a+1) となるとαの大小により場合分け。 A 最大 ® (1)M 最大 最大 [2] a<1ma+ 0≦a <1のと f(x)はx=1 M(a)=1 次に, 2 <α <3 f(a)=f(a+1) a3-6a2+▪ 3a² ゆえに よって a= 2 <α <3と5< [3] 1≦a< f(x)はx= M(a)= 解答 最大 または 9+√33 [4] 6 f(x)はx= M(a) f'(x)=3x²-12x+9 =3(x-1)(x-3) f'(x) = 0 とすると x=1,3 f(x) の増減表は次のようになる。 x 1 f'(x) + 0 - 3 f(x) 解答の場合分けの位置のイ y=f(x)メージ 以上から 4--- y=f(x)| 4 NN [2] [3] [4] 0 + 極大| 極小 01 3 a01 a 3a+1 x 4 0 検討 よって, y=f(x)のグラフは右上の図のようになる。 ゆえに、f(x)のa≦x≦a+1における最大値 M (α) は,次 のようになる。 [1] a+1 <1 すなわち α <0の [1] y とき f(x)はx=α+1で最大となり 1指針のA [区間で単調増 加で,右端で最大]の場 最大 合。 M(a) =f(a+1) =(a+1)-6(a+1)^+9(a+1) =a³-3a²+4 1 1 a O 1 a+1 3 3次関数のク p.344 の参考 ラフは点対 はない。す るとき 対称ではな 練習 |上の解答の =1/2とし Q= なお、放物 f(x)=x³- ⑤224よ。

回答募集中 回答数: 0
数学 高校生

(1)の解答で(X,Y)を(x,y)にかきかえてとありますが なぜですか?? X=x+p、Y=y+qと書いてあるのでそれがなぜ書き換えられるのかよく分かりません💦

第3章 基礎問 78 第3章 図形 48 一般の曲線の移動 図かけ (1)(i) 点(x,y) をx軸方向にp, y 軸方向に g だけ平行移動し 点を(X, Y) とするとき, x,yをX,Yで表せ. () 曲線 y=f(x) をx軸方向にp, y 軸方向に gだけ平行 移動した曲線の方程式は y-g=f(x-p) で表せること を示せ. (2)(i)(x,y) を直線x=α 2 参考 y=f(2a-X) (X, Y) を (より)に書きかえて①左部木 y= f(2a-x) (2) の (i)において, 点 (X, Y) を直線 y=bに関して対称移動すると,点 (X,26-Y)に移ります。 x=a (20-x,2b-y) (a,b) すなわち, 点 (2a-x, 2b-y) に移り、この点 最初の点(x,y) を結ぶ線分の中点は(a,b) (x,y) になります. y=b (X, Y) これは,「ある点を直線 x=α に関して対称移 (i) 曲線 y=f(x)を直線 r=a に関して対称移動した曲 線の方程式は y=f(2a-x) と表せることを示せ. に関して対称移動した点を (X, Y)とするとき, x, y を X, Yで表せ 79 (1) () 軌跡の考え方によれば, XとYの関係式を求めることが目 精講 標ですから,xとyを消去すればよいことになりますが、 最後に XをxにYを」に書きかえることを忘れないようにしましょ う.それなら、はじめから移動後の点を (x, y) とおけばよいと思うかもし れませんが,それでは移動前の点(x,y) と区別がつかなくなります。この ような理由でおかれた (X, Y) を流通座標といいます。 そのあと直線y=bに関して対称移動することは、もとの点の 点 (a, b) に関する対称点を求めることと同じ」ということです。 図 からわかるように「点対称とは,対称の中心のまわりに180°回転する ことと同じです。 ポイント 曲線 y=f(x) をx軸方向にp, y 軸方向にだけ 平行移動した曲線の方程式は f(x) 曲線 y=f(x) を直線 =α に関して対称移動し た曲線の方程式は (!)(T) 解 答 X=x+p faal Y=y+q だから この()は ↑においてその値を定めた 上にある点。つまり、y=f(x) y+q (X,Y) ときの値がただつに q 注 x=X-p, y=Y-q u(x,y)=f(x)をみたすので定まるということ。 Y-9= f(x-p (X, Y) を (x, y) に書きかえて y-q=f(x-p) (2)(i)右図より y x+X 2 ==a, Y=y 0 XC x=a y= f(2a-x) p x+px 平行移動の公式は「xにを yy-g を代入する」ことだから, 曲線がf(x,y)=0 の形のときは,f(x-p, y-g)=0 が平行移動した曲線 になります(演習問題48) また,この公式は、証明できることがどうで もいいとはいいませんが,まず, 使えるようになることが大切です . 13 x=2a-X,y=Y (i) (x,y) は y=f(x) をみたすので, (x,y) (X,Y) 演習問題 48 x+X |-1|+|y-2|=1 で表される図形を図示せよ.

解決済み 回答数: 1