学年

質問の種類

数学 高校生

二次方程式の解についての質問です。 マーカー部分ですが、なぜこの形になるのかがわからないです。②の式の左辺を変形したらいいと書いていますが、どう変形したらそうなるのか教えて欲しいです。 よろしくお願いします🙇🏽

発例題 展 52 2次方程式の解についての証明問題 <<< 基本例題46 ① 000 a b は定数とする。 方程式 (x-a)(x-b)+x+1=0 の2つの解をα,Bとす。 ると,方程式(x-a)(x-β)-x-1=0 の2つの解は a, b であることを証明 せよ。 CHART 解と係数の問題 GUIDE 解と係数の関係を書き出す すると、この例題の 一解答の方程式 ①,②から。 条件は α+β=a+b-1, αβ=ab+1 結論は a+b=a+β+1,ab=aβ-1 となり,③ から ④を示すとよいことになる。 ...... 4 解答 (x-a)(x-b)+x+1=0 の左辺を展開して整理すると x2-(a+6-1)x+ab+1=0 ① この2つの解がα, β であるから,解と係数の関係により ゆえに a+β=a+b-1, aβ=ab+1 a+b=a+β+1, ab=aβ-1 このことは, a, b が2次方程式 x2-(a+β+1)x+αβ-1=0 すなわち (x-α)(x-β)-x-1=0 の解であることを示している。 Lecture 因数分解の利用 x²+px+g=0 の2つの 解がr,s ⇔ r+s=-p rs=q GUIDE の方針により, 1 を移する。 FotstJ ■x2-(和)x+ (積) = 0 ②の左辺を変形。 2次方程式の解α, β に対して, (x-α)(x-B), (-a) (-B), (α-)(B)の形の式 が出てきたときは 平 ax2+bx+c=0 の2つの解がα, ßax+bx+c=a(x-a)(x-β) を利用することで, あざやかに解決できることがある。 [上の例題の別解] (x-a)(x-b)+x+1=0 の2つの解がα, β であるから 左辺は, (x-a)(x-b)+x+1=(x-a)(x-B)と因数分解できる。 (x-a)(x-B)-x-1=(x-a)(x-b) ゆえに よって, ← 移項 (x-a)(x-β)-x-1=0 の2つの解は a, b である。 J 全宗

解決済み 回答数: 1
英語 中学生

これを訳してほしいです! できたら代名詞が具体的に何を指しているのかも教えていただきたいです!お願いします。

G9 Class NO Name The Normans / コント 1. Fill in the correct words. In 1066, William of Normandy ) invaded Britain with a powerful army. The Normans とうと spoke (French). For 200 years the language of the nobility was (French and county people and farmers were speaking (English ). French words had their roots in (Latin). 起源 In 1066 / England was invaded for the last time. William of Normandy, who is ノルマンディー公のウィリアム イギリス侵略された最後に called William the Conqueror, invaded Britain with a powerful army. French was と呼ばれていた 征服王 軍隊 ウィリアムモ the language of the Normans, so French became the language of the nobility for だから そこで 高貴 200 years. During that time only fariners and country people continued to speak その間 いなかだけ英語で話し続けた English. The Anglo-Saxon cook in the kitchen of a French lord/prepared dinners 料理人S フランスの領主の kitchenの料理人 0 from pigs, cows or sheep, but when the meal' was taken into the dining room 食事が上に持っていかれた饐 ぶた牛 洋しかし を使って upstairs, it was called pork, beef or mutton, which are the French words for these 牛 animals. Many French words, too, had their roots in Latin. and they pork beef .mution これらの動物 多くのフランス語もラテンに起源をもっていた に対するクラ ) 語

未解決 回答数: 1
数学 高校生

ベクトルの問題なんですけど、例題では不等号にイコールがついてないのに練習問題では不等号にイコールがついているのはなんでですか?

000 +161 29 基本事項 12 数学C 重要 例題 21 ベクトルの大きさと絶対不等式 して成り立つような実数kの値の範囲を求めよ。 00000 ||=1, |8|=2,=√2 とするとき,ka +t6 >1がすべての実数に対 A>0,B>0 のとき ここで \ka +t6 />1.・・・・・ ①と同値である。 |ka+t6p=k2\d+2kta ||=1, |5|=2, a1= √2 であるから ka+t6p=k+2√2 kt+4t2 よって, ① から k2+2√2kt+4t>1 A>BA2>B² +12 スピュア (5) (E-AO (va)=10.J は として扱う ka +t6>1は ka+t62>12 いての2次式)>0 の形になる。 ・0 するとも きる部分 二示すと CHART & SOLUTION この式に対し, 数学Ⅰで学習した次のことを利用し、の値の範囲を求める。 tの2次不等式 at°+bt+c>0 がすべての実数について成り立つ ⇔a>0 かつ b-4ac< 0 解答 ka +t620 であるから, ka+t>1は B-10-20 基本18 よって ゆえに 1章 3 so =kx2+2kt×1 + t×12 4k+2kt+t... ① それぞ d= e= ・・・・・ ① と同値である。 ① を計算して整理すると, (tにつ ベクトルの内積 ka +t620 であるから, ka + to≧2は ka + to ≧ 4... ②と同値である。 A≧0, B≧0 のと ABAB よっ よって, ①,② から 4k2+2kt+t^≧4 すなわち 2+2kt+4k2-40...... ③ ③ がすべての実数 tに対して成り立つための条件は, tの2次 J= は定数と考える。 PR 43 21 うな実数kの値の範囲を求めよ。 |||=2, |6|=1, |- =√3 とするとき, [ka +162 がすべての実数に対して成り立つ Aq PR 3 la-6=√3 の両辺を2乗して ||=2, |6|=1 を代入して a.b=1 |ka+t6p=ka+2kta +12 la-246+18=3 2-2à・6+1=3 【CHART はとして扱う ②23 点 の 3点D 方程式 2+2kt+4k2-4=0 の判別式をDとすると,の係数 は正であるから D≤0 また ドの係数>0.D0 9 ここで =k²-1×(4k²-4)=-3k²+4 (01- D よって -3k²+4≤0 ゆえに k²- ≥0 2 したがって110 D よって -2k²+4< 0 ゆえに k²-2>0 したがって k<-√2,√2<h INFORMATION 2次関数のグラフによる考察 上の CHART & SOLUTION で扱った絶対不等式は, 関数 y=at2+bt+c のグラフが常に 「t軸より上側」 にある, と して考えるとわかりやすい。 y すなわち 4t2+2√2kt+k-1>0 ② ② がすべての実数tに対して成り立つための条件は, tの2 次方程式 4t2+2√2kt+k-1=0 の判別式をDとすると, の係数は正であるから D<05 seal ここで =(√2k)²-4× (k²-1)=-2k²+4+ D<0 が条件。 問題の不等式の条件は PR ② がすべての実数に 対して成り立つこと。 ②24 PR 22 実数x, y, a, b が条件 x+y=1 および " + 6 =2 を満たすとき, ax + by の最大値、最小 値を求めよ。 5 p. を原点とする。 yt √2 x+y=1 を満たすx, y に対して (k+√2) (k-√2)>0 Q OP= (x,y)とし、 a2+b2=2をたす a, b に対して -√2-1 ゆ OQ= (a, b) とする よって 0° C y=af+bt+c 0 t [a>0かつb-4ac <0] PRACTICE 21° よって 2 (+by)2 ゆえに ||=2,|6|=1,|a|=√3 とするとき, ka+t6/≧2 がすべての実数に対して成 り立つような実数kの値の範囲を求めよ。 OP, OQ のなす角をすると OP.OQ=|OP||Cocose ax+by=1×√2 Xco -cos1でから 180°より, -√2 Sax+bys√2 ax + by の最大値は√2,最小値は 別解 コーシー・シュワルツの不等式から (a+b2+y^)≧ (ax+by)2 等号が成 よっ 2ax+bys√2 αy=bx のときである。 立つのは ax + by の最大値は2,最小値は√2 ←OP|=√x+y=1, E 100=√a+b=√2 すなわち, 80°のと き最大値, 0=180°のと き最小値をとる。 ルツの コーシー・シュワ は,PR 20 式について を参照。

解決済み 回答数: 1
数学 高校生

不定積分の計算について質問です。2枚目のカッコで括ったところの文なのですが、どうしてその式では間違いなのでしょうか。一見正しいように見えます。説明をお願いします🙇‍♀️

372 基本例題 236 不定積分の計算 (2) (ax+b) 型 0000 次の不定積分を求めよ。 (1) S(3x+2)dx (2)f(x+2)(x-1)dx 基本 235 指針それぞれ,展開してから不定積分を求めることもできるが, 計算が面倒。 (1) p.321 の公式② から {(ax+b)"+1}′=(n+1)(ax+b)" a よって,a0 のとき 12/1 1.(ax+b)"+1 -}=(ax+b)" n+1 したがって Sax+b)"dx=1.(ax+b)"+1 +C 1 a n+1 a を忘れずに! 特に S(x+p) dx= (x+p)"+1 n+1 +C (ともにCは積分定数) これらを公式として用いる。 (2)(x+2)(x-1)=(x+2)^{(x+2)-3}=(x+2)-3(x+2)2 と変形すると,上の公式が使えるようになる。 Cは積分定数とする。 又の係数を分母にかけることを忘れない! +C601 15 解答 (1) Sox+2)dx=(x+2)。 (3x+2)5 (2)f(x+2)(x-1)dx=f(x+2)(x+2)-3)dx =f{(x+2)-3(x+2)}dx a)=3r である 積分定 ことを (2) 曲線 したが また、 0:00)/(x)= を忘れないように! (2)=0 これを解い 形。 -αの形に変 ◄S(x+p)"dx したがって [2] 曲線y= きはf'(x) =(x+2)(x+2)+ 4 +C =(x+2) 4 -{(x+2)-4}+C (x+2)³(x-2) +C 4 4(x+1)+1 +C n+1 1/(x+2)でくくる。 注意 微分の計算については,「積の導関数の公式」 (p.321 公式 ①) があるが,(2)のような積の形 を積分する公式はない。 間違っても f(x+3)(x-1)dx=(x+3)(x-1) +6 +Cなどとしないように! 2 (1) {f(x)g(x)} なお,(2)の結果が正しいことは,次の検算で確かめられる。 {(x+2)(x-2)}={(x+2)}(x-2)+(x+2)(x-2)、 =3(x+2)(x-2)+(x+2)・1 =(x+2)^{3(x-2)+(x+2)}=4(x+2)(x-1) =f'(x)g(x)+f(x)g'(x) したがって また、曲線 ゆえに したがって よって {(x+2) (x-2)+c}=(x+2) (x-1) 練習 次の不定積分を求めよ。 ③236 ③ (1) S(4x-3)dx 2)S(x-3)²(x+1)dx

解決済み 回答数: 1