学年

質問の種類

数学 高校生

なんでこの問題ってpを使うんですか?pとcに使い方の区別があまり出来ないのでそこも教えてくださるとありがたいです、宜しくお願い致します🙇

Tombow 55 男子4人, 女子3人が次のように並ぶとき, 次の並び方は何通りあ るか。 (2) 女子どうしが隣り合わないように円形に並ぶ (1) 女子どうしが隣り合わないように1列に並ぶ ポイント 解答 男子(♂) a, b, c, d, 女子(♀) e,f,g とする。 (2) まず, 男子を円形に並べておいて、あとから女子をすき間に入れます。 (1) 男子を並べておいて、あとから女子をすき間と両端に入れます。 (1)① ♂4人を1 列に並べる ② このときにできる両端とすき その あと 間5か所に♀を1人ずつ入れる と順序立てて, 4! × 5P3=24×60=1440(通り) イメージ ① (2)① ♂4人を円 形に並べる その このときにできるすき間4か 所に♀を1人ずつ入れる あと と順序立てて, ①♂を並べて ② アイウエアオ ア~オの中からef.gを 入れる3か所を選ぶと ♀は隣り合わない ed ♂4人を円形に並べると 3!×4P3=6×24=144 (通り)← ①② すき間は4か所 できる (♀が隣り合わない)=(全体)-(♀が隣り合う) は間違いです。 正しくは (♀が隣り合わない)=(全体) (♀の少なくとも2人が隣り合う) つまり ①eとだけが隣り合う たとえば aefbdg c (全体) - ②eとgだけが隣り合う fとgだけが隣り合う たとえば cfegbda e,f,g の3人が隣り合う となります。 パターン55 〜が隣り合わない

解決済み 回答数: 1
数学 高校生

数Aの反復施行の確率について質問です。 写真の問題のイの式が (5分の3)の二乗×(5分の2)の二乗があるのは分かるのですが、なぜ4P2 ではなく、4C2 をかけるのか分かりません。 PとCの違いは、私の中では並び替えるか、ただ選ぶだけなのか、の違いだと思っているので... 続きを読む

①① ール る る。 O 基本 BURD 50 大会で優勝する確率 3 415 00000 あるゲームでAがBに勝つ確率は常に一定でとする。 A,Bがゲームをし、 5 先に3ゲーム勝った方を優勝とする大会を行う。このとき、3ゲーム目で優勝が ] である。 また, 5ゲーム目まで行ってAが優勝する確率は 決まる確率は 解答 □である。 ただし, ゲームでは必ず勝負がつくものとする。 基本 49 1回のゲームで, A が勝つ (Bが勝つ) 確率が一定であり, 各回のゲームの勝敗は独立 で,これを何回か繰り返した結果の確率を考えるから, 反復試行の確率の問題である。 (ア) Aが続けて3勝するか,または, Bが続けて3勝する場合がある。 この2つの事象は互いに排反であるから 加法定理を利用して確率を求める。 (イ) 求める確率を5C3 (1/2)(7/2) としたら誤り! 5ゲームでAが優勝するのは, 4ゲーム目までにAが2勝2敗とし, 5ゲーム目でAが勝つ場合である。 CHART 反復試行の確率 1枚取り出すとき pen, r nCrp'(1-p)" 1回のゲームで A が負ける (B が勝つ) 確率は 1-- 5 = (ア) 3ゲーム目で優勝が決まるのは,Aが3ゲームとも勝 つか,または, Bが3ゲームとも勝つ場合で,これらは 排反事象であるから,求める確率は TO 3 3 27 8 35 7 + = + = 5 125 125 25 (イ)5ゲーム目まで行って, Aが優勝するのは,4ゲーム までにAが2勝2敗で, 5ゲーム目にAが勝つ場合で あるから, 求める確率は *C₂(3³)* ( 2 ) * × 3 = 6. 2². 3 55 4C21 5 5 = 検討 このような問題では,優 勝する人は最後のゲー ムに必ず勝つ,というこ とに注意が必要である。 加法定理 (1) sc₂ (3)*()* 1±. 2章 8 ⑧ 独立な試行・反復試行の確率 648 3125 5 ゲームすべて行って A が3勝2敗の確率である。 これには○○○××の ような場合が含まれてし まう。

解決済み 回答数: 1