学年

質問の種類

数学 高校生

2つの整数解α、β(α≦β)と置く理由がいまいち分かりません。とくにα≦βと置く理由です。 なので、(1)ではそのままα≦βの条件のままkを求めるのに対して、(2)ではα≦βという制限がなくていい理由もピンと来ません。教えてください🙇‍♀️

数学Ⅱ-47 練習 (1) 2次方程式x²ー(k+6)x+6=0の解がすべて整数となるような定数kの値とそのときの整 053 数解をすべて求めよ。 (2) 定数とする。 x2+px+2p=0の2つの解α, βがともに整数となるとき,組 (a, B, p)をすべて求めよ。 (1) 2つの整数解を α, B(α≦B)とする。 解と係数の関係から a+β=k+6,αβ=6 α β は整数であるから, kも整数である。 aβ=6から (a, B)=(-6, -1), (-3, -2), (2, 3), (1, 6) また,k=α+β-6であるから [(2) 類 関西大〕 2 ←重解のとき α=β(1) 練 ←a, B(a≦B) は6の約 - k=-13, 11, -1, 1 数である。 よって k=-13のとき x=-6, -1; k=-11 のとき x=-3, -2; k=1のとき x=2,3; k=1のとき x=1,6 (2) 解と係数の関係から a+β=-p, aβ=2p ...... ① ←第1式から pを消去すると αβ=2{-(a+β)} p=-(a+B) 変形して (α+2) (β+2)=4...... ② ←αβ+2(a+β)+4=4 ここで, p>0であるから, 1 より a+β < 0, aβ > 0 よって α <0.β<0 ←p>0の条件を利用。 ゆえに α+2<2,β+2 <2 α, βがともに整数のとき, α+2, β+2 も整数であるから, ② (a+2, B+2)=(-4, -1), (-2, -2), (-1, -4) よって (a, B)=(-6, -3), (-4, -4), (-3, -6) p = -(a+β) であるから, 求める (α, β, p) の組は (a, B, p)=(-6, -3, 9), (-4, -4, 8), (-3, -6, 9) (1)と同様にα≦βの仮 定をつけて進め, 後から α≦βの制限をはずす, という流れでもよい。

解決済み 回答数: 1
数学 高校生

青チャートです。 このページの練習問題の(1)なんですけど、他の例題や(2)は、結論から変形して条件を使って証明している感じなんですけど、(1)は条件を変形して結論に持っていく解答になってて、これはどういった理由こういうアプローチの仕方の違いなのですか。どこに目をつけたらそ... 続きを読む

解答 (2) a+b+c=ab+bc+ca=3のとき, a, b, cはすべて1であることを証明せ よ。 指針 まず, 結論を式で表すことを考えると、次のようになる。 (1) a,b,c のうち少なくとも1つは1である ⇔ a=1 または 6=1 または c=1 ⇔a-1=0 または 6-1=0 または c-1=0 ⇒ (a-1) (6-1)(c-1)=0 ★ (2) a, b, cはすべて1であるα=1 かつ 6=1 かつc=1 ⇔a-1=0 かつ 6-1=0 かつ c-1=0 (a-1)+(6-1)+(c-1)=0 よって、条件式から,これらの式を導くことを考える。 ②13 (1) (2) 142x CHART 証明の問題 結論から お迎えに行く (1) P=(a-1) (-1) (c-1) とすると P=abc-(ab+bc+ca)+(a+b+c)-1 abc=1とa+b+c=ab+bc+ca を代入すると P=1-(a+b+c)+(a+b+c)-1=0 よって α-1=0 または 6-1=0 または c-1=0 したがって, a, b c のうち少なくとも1つは1である。 (2)Q=(a-1)+(6-1)+(c-1)2 とすると Q=a+b2+c-2(a+b+c) +3 ここで, (a+b+c)=a+b2+c2+2(ab+bc+ca) るから ゆえに よって a+b2+c2=(a+b+c)2-2(ab+bc+ca) =32-2・3=3 Q=3-2・3+3=0 α-1=0 かつ 6-1=0 かつ c-1=0 したがって, a, b, cはすべて1である。 指針 (1) の... の方針 結論から方針を立てる ことは,多くの場面で有 効な考え方である。 |ABC = 0 ⇔A=0 または B=0 またはC= 0 <指針(2)の__★の方針 実数 A に対し A'≧0 [等号はA=0のとき成 り立つ。] これを利用した手法であ る。 A'+B'+C2=0 ⇔A=B=C=0 15 a $16 ◎17 練習 a b c d は実数とする。 ④ 26 1 + + a 1 1 b のとき,a,b,cのうちどれか2つの和は 0 である 1 a+b+c C ことを証明せよ。 (2) a2+b2+c+d=a+b+c+d=4のとき, a=b=c=d=1であることを証明せ よ。 p.49 EX17

解決済み 回答数: 1