学年

質問の種類

英語 高校生

カッコで囲んだとこの英文の1つ目のandからの訳がどうして2枚目のようになるのか教えてください。 2枚目のどんな疑問が重要か〜の次のとこからです

ample practices varied across time and place. The truth is that we about what preliterate societies knew or believed. But they left behind *. evidence of their attention to the movements of the Sun and the phases of the Moon. And we can be sure that whatever questions they asked of the heavens were very different from those that motivate space exploration today. (A) rotic othe In reality, the difference between ancient and modern knowledge systems is more qualitative than quantitative; it is not about how much is known, but about what questions are important and about the acceptable ways of asking and answering those questions. And while we may not easily be able to slip between our modern worldview and those of others, we can nonetheless attempt to do so by asking not what ancient people knew about the world, but what their questions were when they looked at it. If we do this in the case of Mars, examining a few of the earliest known examples from around the world, we can see how sky knowledge was considered important to the functioning of the state whether it was *astrological knowledge in the service of good governance, or knowledge of bloodlines and relationships with the gods and other sky entities, which was used (B) - verdd

回答募集中 回答数: 0
数学 高校生

(2)の(ア)の解答のマーカー引いてある部分がなぜこの式変形になるのか教えて欲しいです

628 基本 28 内心、傍心の位置ベクトル 00000 (1)AB=8. BC=7,CA=5である △ABCにおいて、内心を1とするとき、 を AB, AC で表せ。 (2) AOAB において, OA=d, OB= とする。 別解 ベク とす (ア) を2等分するベクトルは,k ることを示せ。 (+) (kは実数, k≠0) と表され OA' 形O 点 C よっ (イ) OA=2,OB=3, AB=4 のとき, ∠Oの二等分線と ∠Aの外角の二等分 指針 線の交点をPとする。 このとき,OP を で表せ。 (1)三角形の内心は,3つの内角の二等分線の交点である。 次の「角の二等分線の定理」 を利用し, まずAD を AB, AC で表す。 右図で AD が △ABCの∠Aの二等分線 ⇒ BD:DC=AB: AC 次に, △ABD と ∠Bの二等分線BIに注目。 基本 26 (2)Oの二等分線と辺ABの交点をDとして,まずODを,で表す。 [別解] ひし形の対角線が内角を2等分することを利用する解法も考えられる。 つ まり, OA'=1, OB'=1 となる点 A', B' をそれぞれ半直線 OA, OB 上にとっ てひし形 OA'CB' を作ると,点Cは ∠Oの二等分線上にあることに注目する。 (イ)(ア)の結果を利用して, 「OPをa, で2通りに表し、係数比較」 の方針で。 AC=OA となる点Cをとり, (ア)の 点Pは∠Aの外角の二等分線上にある → 結果を使うとAPはa で表される。 OP = OA+APに注目。 (イ) 点 20 らっ OP AC と、 ZE よ a 0 解答 (1) △ABCの∠Aの二等分線と辺BCの交点をDとすると BD: DC=AB: AC=8:5 ZCの二等分線と辺 A ABの交点をEとし AE: EB=5:7, 5AB + 8AC 別解 よって AD= 10 13 8 15 EI:IC=:5 8 56 また, BD=7・・ であるから =2:3 A 13 13 56 B 7 D C AI: ID=BA: BD=8: -=13:7 このことを利用して もよい。 13 角の二等分線の定理 ゆえに 15 ゆえに 0D= |6|0A+|4|OB |a|+|6| AI=2AD=1.5AB+8AC-1AB+/AC 20 20 13 (2)Oの二等分線と辺AB の交点をDとすると AD: DB=0A: OB=||:|| を2回用いると求め られる。 角の二等分線の定理 を利用する解法。 検討 0 aba a+ba 61 + (2) 練習 (1) |4| D|6| ③ 28 (2 求めるベクトルは, t を t≠0 である実数としてtOD と表 ab される。 |a|+|6| t=kとおくと, 求めるベクトルは (+) (kは実数, k≠0) a A tOD=|al|b a+ba +

回答募集中 回答数: 0
英語 高校生

15年の内で私が京都を訪れる最初の時だという文には完了が使えるのに15年の内で初めて京都を訪れているという文には完了系が使えないのですか?違いが分からないので教えて頂きたいです。よろしくお願いいたします。

・「京都は15年ぶりなんです」 悩む velmi hot Jaysb we] [txen Jasq] las ・「最後に京都を訪れて以来, 15年である」 ・It is(has been fifteen years • Fifteen years have passed since I • was last in • last visited文 Kyoto last came toldjob asrt noislugoqed 1.0.0 - 補語に ならない Mである!! . ・「これは15年のうちで私が京都を訪れる最初の時だ」 This is to the first time x for the first time . last stayed in NAT (NU) Oni (lo on | Kyoto the fifteen years ⚫ I've been to [in] I've visited [come to / stayed in]] aldiazoq ai I haven't visited 「私は15年間京都を訪れていなかった」 ・「これは15年のうちで京都への最初の旅行 [訪問] だ 」 = This is my first trip [visit] to Kyoto in for [in] fifteen years. for xie すべての中で fifteen years × time to come ← 〈This is one's first +行為名詞~〉を用いる! 「私は15年のうちで初めて京都を訪れている」 ertime seri Dangliest art ・I'm visiting [staying in] Kyoto 10 for the first x visit 性 | x I have been to [in] 1x first in fifteen years まず第一の意味 「行ってきたところだ」 という〈完了〉のニュアンスになってしまう!

回答募集中 回答数: 0