学年

質問の種類

英語 高校生

この日本語訳おかしくないですか?どう考えてもどういうことをいってるのか理解ができなくて直訳してるのはわかるのですが…。 どのようなことをいっているのか教えていただきたいです。

第1文 (している)間にに取り組んでいる (分)(Vt 原子 爆弾 でロスアラモス の間 大戦 [While working on the atom bomb (at Los Alamos) (during... War), M Jedi M “While working” は “While (he was) working” とも, 分詞構文 working に接 while を付加して “While he worked” の意味を明確にしたとも解釈できます (31課)。 ファインマンは・・・に~をさせた妻・・・に~を出す 自分(に) 手紙(を)を使って 暗号 Feynman had his wife send Vt (価格) C (Vt) (01) him letters (O2) ( in a code) M [nl evil I ...への (それ) 自分が ない を知ら 鍵 [(to which) he did not know the key]: Me agres Vt (否) O <have O > ( 16課) 注意 51* dairw (to which) を (to a code) にして, the key (to a code) の結合を見抜くのがポイン トです。 彼はと感じた満足している(~する)ときに彼がわかった he felt satisfied [ when he discovered the code]. 4805 S Vi C (過分) (接) S Vt O <全文訳》 第2次世界大戦中ロスアラモスで原爆に取り組んでいる間, ファインマ ンは自分が解読の鍵を知らない暗号で妻に自分宛の手紙を出させた。そして、彼 (+) は暗号を解読して満足した。 【語句】 Feynman ファインマン (1918-88; 米国の物理学者; ノーベル物理学賞)/ work on [Vt] に取り組む/ Los Alamos (ロス・アラモス; 米国 New Mexico 北部の町; 最初に原爆を製造した研究所の所在地)/ code 暗号/key (問題・パズルの) 手 がかり 鍵 / discover Vt を発見する

解決済み 回答数: 1
英語 高校生

カッコで囲んだとこの英文の1つ目のandからの訳がどうして2枚目のようになるのか教えてください。 2枚目のどんな疑問が重要か〜の次のとこからです

ample practices varied across time and place. The truth is that we about what preliterate societies knew or believed. But they left behind *. evidence of their attention to the movements of the Sun and the phases of the Moon. And we can be sure that whatever questions they asked of the heavens were very different from those that motivate space exploration today. (A) rotic othe In reality, the difference between ancient and modern knowledge systems is more qualitative than quantitative; it is not about how much is known, but about what questions are important and about the acceptable ways of asking and answering those questions. And while we may not easily be able to slip between our modern worldview and those of others, we can nonetheless attempt to do so by asking not what ancient people knew about the world, but what their questions were when they looked at it. If we do this in the case of Mars, examining a few of the earliest known examples from around the world, we can see how sky knowledge was considered important to the functioning of the state whether it was *astrological knowledge in the service of good governance, or knowledge of bloodlines and relationships with the gods and other sky entities, which was used (B) - verdd

回答募集中 回答数: 0
数学 高校生

図形と方程式の問題です (3)の色の着けたところがよく分かりません。点Pの1つが点Aであるのは何故ですか?解説読んでも分かりませんでした。

頂き を の 部 Y4 図形と方程式 (50点) 0を原点とする座標平面上に, 中心が点 (3, 1) でx軸に接する円Cがある。また、原 点からに引いた接線のうち,傾きが正であるものをとし,Cとlの接点をAとする。 (1) Cの方程式を求めよ。 (2) lの方程式を求めよ。 (3)は,中心がy軸上にあり,点AでCとlに接している。 Dの方程式を求めよ。ま 点PはD上の点であり, OP =3を満たしている。点Pの座標を求めよ。 配点 (1) 10点 (2) 18点 (3) 22点 解答 (1) Cの中心が点 (31) であり, Cはx軸に接するから,Cの半径は, C の中心のy座標に等しく, 1である。 x軸に接する円の半径は、円の 心のy座標の絶対値に等しい。 したがって, Cの方程式は (x-3)2+(v-1)2=1 圏 (x-3)2 +(x-1)²=1 (2) 解法の糸口 Cとl が接することを, 2次方程式が重解をもつ条件に読み替えて考える。 lは原点を通る傾きが正の直線であるから,その方程式は y=mx(m>0) と表される。 C と l が接するとき,これらの方程式からyを消去して得られるxの2次 方程式 (x-3)2+(mx-1)=1 は重解をもつ。 ①を整理すると (x2-6x+9)+(m2x2-2mx+1)=1 (m²+1)x2-2(m+3)x+9=0 ①'の判別式をDとすると2=0であり D 121=(m+3)2-9(m2+1)= 0 -8m²+6m=0 -2m (4m-3)=0 3 m = 0. 4 3 m>0より m = 4 したがって、lの方程式は y= [(2)の別解〕 (3行目まで本解と同じ) 3-4 3 y=x NA A ROS C EL 10 3 x ◆円と直線の方程式からyを消去し て得られるxの2次方程式を ax2+bx+c=0 とし、その判別式をDとすると, D=62-4ac であり 円と直線が接する ← 2次方程式が重解をもつ ⇔D=0 D また,b=26' のとき 1241=b2-ac

解決済み 回答数: 1