学年

質問の種類

英語 高校生

(C)に当てはまる単語を選び形を変えて入れる問題です。入る単語はlookで、回答はlooksでしたがなぜlookedがダメなのかが分かりません。理由を教えて欲しいです。

d times ir way in the early morning hours. Another concern has to do with the cost implications of delaying school start - an ever-present issue in the age of increasingly tight school budgets, and decreasing tax revenues. The move could lead to a range of initial up-front costs, with budget-watchers worried most ( 2 ) costs/associated with changing bus schedules and additional lighting for athletic fields because after-school activities would be pushed later in the day. However, our recently released research for the RAND Corporation ( B ) that delaying school start times to 8:30 a.m. could actually result in significant economic statewide benefits that would be realized within a matter of years. Over the span of about a decade, the United States could stand to make financial gains of around $83 billion if teenagers were able to get more sleep. In California alone the financial gains would be just over $10 billion. Within even two years, most states would break even in terms of the initial costs of the move versus the economic benefits. These gains are based on a macroeconomic model that ( C ) at two key effects of better-rested teens: improved academic performance and reduced motor vehicle crashes. In terms of academic performance, research published ( 3 ) the apt title

未解決 回答数: 1
TOEIC・英語 大学生・専門学校生・社会人

下線部(1)の文構造が分かりません。特に2行目の文構造が分かりません。強調のdoであることは分かりますが、その後のthat以降が関係詞?かすらも分からないので、誰か教えて下さい!

次の英文は1991年に出版された本からのもので、 研究分野としての「人工知 能」 (Artificial Intelligence) について述べています。 下線部(1)~(3)を日本語に訳 しなさい。 What is Artificial Intelligence (AI)? Just about the only characterization of Al that would meet with universal acceptance is that it involves trying to make machines do tasks which are normally seen as requiring intelligence. There are countless refinements of this characterization: what sort of machines we want to consider; how we decide what tasks require intelligence and so on. One of the most important questions concerns the reasons why we want to make machines do such tasks. AI has always been split between people who want to make machines do tasks that require intelligence because they want more useful machines, and people who want to do it because they see it as a way of exploring how humans do such tasks. We will call the two approaches the engineering approach and the cognitive-science respectively. (2) (1) approach The techniques required for the two approaches are not always very different. For many of the tasks that engineering AI wants solutions to, the only systems we know about that can perform them are humans), so that, at least initially, the obvious way to design solutions is to try to mimic what we know about humans. For many of the tasks that cognitive-science Al wants solutions to, the evidence on how humans do them is too hard to interpret to enable us to construct computational models, so the only approach is to try to design solutions from scratch" and then see how well they fit what we know about humans. The main visible difference between the two approaches is in (3) their criteria for success; an engineer would be delighted to have create something that outperformed a person; a cognitive scientist would regard it as a failure. -1- M7 (492-61

未解決 回答数: 1
数学 大学生・専門学校生・社会人

多様体を構成するために、位相空間に完全アトラスを導入するところで質問です。 完全アトラスを導入するメリットとして、この文章の下線部を「異なる座標系を用いたのに同じ計算ができてしまうという問題が解消される」解釈したのですが、そこがよくわかりません。座標系を変えて計算する... 続きを読む

1 Two n-dimensional coordinate systems & and ŋ in S overlap smoothly provided the functions on¯¹ and ŋo §¯¹ are both smooth. Explicitly, if : U → R" and ŋ: R", then ŋ 1 is defined on the open set ε (ur) → ° (UV) V and carries it to n(u)—while its inverse function § 4-1 runs in the opposite direction (see Figure 1). These functions are then required to be smooth in the usual Euclidean sense defined above. This condition is con- sidered to hold trivially if u and do not meet. Č (UV) R" Ĕ(U) n(UV) R" S n(v) Figure 1. 1. Definition. An atlas A of dimension n on a space S is a collection of n-dimensional coordinate systems in S such that (A1) each point of S is contained in the domain of some coordinate system in, and (A2) any two coordinate systems in ✅ overlap smoothly. An atlas on S makes it possible to do calculus consistently on all of S. But different atlases may produce the same calculus, a technical difficulty eliminated as follows. Call an atlas Con S complete if C contains each co- ordinate system in S that overlaps smoothly with every coordinate system in C. 2. Lemma. Each atlas ✅ on S is contained in a unique complete atlas. Proof. If has dimension n, let A' be the set of all n-dimensional coordinate systems in S that overlap smoothly with every one contained in A. (a) A' is an atlas (of the same dimension as ✅).

未解決 回答数: 0