学年

質問の種類

物理 高校生

(9)はどうして赤ペンのような式になるんですか?? 私の考え方のどこが間違えてるのか教えて欲しいです🙇🏻‍♀️

II 次の文章の空欄にあてはまる数式, 数値または語句を, それぞれ記述解答用紙の所 定の場所に記入しなさい。 ただし, (1)~(10)の解答欄には数式または数値を, (11)の解答 欄には語句を記入しなさい。 (33点) 図1に示すように抵抗とコイルをつないだ回路で, スイッチSを閉じたり開いた りしたときに回路に流れる電流を考えよう。 電池の起電力をE, コイルの自己インダ クタンスをL, 2つの抵抗の抵抗値は図1のように r, R とする。 電池と直列につな がれた抵抗値rの抵抗は電池の内部抵抗と考えてもよい。 また, 導線およびコイルの 電気抵抗は無視できるものとする。 b a d E 図 1 h In R g ERO h S スイッチSを閉じた後のある時刻にコイル, 抵抗値 R の抵抗を図1の矢印の向き に流れる電流をそれぞれ I, I と書くことにする。このとき, 抵抗値の抵抗を流れ る電流は (1) となる。 経路 abdfgha についてキルヒホッフの法則を適用すれ ば、電池の起電力と回路に流れる電流の間にはE= (2) の関係が成り立つ。 一方、このときコイルを流れる電流が微小時間 4tの間にだけ変化したとすると, -10- LI+(r+B)I

回答募集中 回答数: 0
数学 高校生

(2)のED:DFの問題が分かりません 解説よろしくお願いします🙇‍♀️

解答 基本 ((1) 例題 182 チェバの定理, メネラウスの定理 ( 1 ) 467 00000 1辺の長さが7の正三角形ABC がある。 辺AB, AC上にAD=3,AE=6 となるように2点D, E をとる。このとき, 線分 BE と CD の交点をF, 直線 AF と辺BC の交点をGとする。 線分 CG の長さを求めよ。 ( (2) △ABCにおいて,辺AB 上と辺 AC の延長上にそれぞれ点E,F をとり, 「AE: EB=1:2, AF:FC=3:1 とする。 直線 EF と直線 BCの交点をDと するとき, BD: DC, ED: DF をそれぞれ求めよ。 指針 図をかいて,チェバの定理, メネラウスの定理を適用する。 (1)3頂点からの直線が1点で交わるならチェバの定理 (2)三角形と直線1本で メネラウスの定理 B (1) AD=3,DB=7-3=4,AE=6,CE=7-6=1 △ABCにおいて, チェバの定理により BG CE AD =1 GC EA DB 駅やウ BG 13 すなわち =1 GC 64 BG -=8から BG=8GC GC よってCG=1/2BC=1/1 •7= り 79 B D ---- A -co- 3 -----6---- 7-----GC p.465 466 基本事項 3 3 ② B (2) (3) =1 (2) (3) E 3章 12 (2)△ABCと直線 EF について, A メネラウスの定理により E メネラウスの定理を用い るときは, 対象となる三 角形と直線を書く。 SoxneBD CF AE 2 =1 3 DC FA EB ③ C E BD 1 1 B D すなわち = 2 BD =6から DC (2)DC 3 BD: DC=6:1 △AEF と直線 BC について, メネラウスの定理により =1 F DC + OB ① ②② ED FC AB ED 13 F = 1 すなわち DF CA BE DF 2 200:08 ① ② 9.-1 ③ =1 ③ ED DF =1から ED: DF =4:3 に内分する点をD, 辺ACを4:3に内分する点 辺BCの交点をFと

回答募集中 回答数: 0
物理 高校生

どうしてマーカーの式になるのか教えて欲しいです🙇🏻‍♀️ (き)と(く)です。

14 2022年度 物理 立教大理 (2/6) VI.次の文を読み、下記の設問1.2に答えよ。 解答は解答用紙の所定欄にしるせ 電場や磁場の影響を受け, xy 平面上を運動する荷電粒子を考える。 図1のように, y 軸方向正の向きに強さE の一様な電場がかかっているとする。質量m, 電気量g(g > 0) の荷電粒子が時刻 t = 0 に原点から初速度v=v, 0 ) ( 0 ) で運動を開始した。時刻でのこの粒子の位置は である。 (x, y) = ( い ) 立教大理(2/6) max= お ma か 2022年度 物理 15 となる。このことから,この粒子の運動は, by 座標系に対し一定の速度 (きく で運動する観測者から見ると円運動であることがわかる。 この粒子が xy 平面上に描く軌 道をCとする。 また, 質量m 電気量gの荷電粒子が原点Oから初速度 =(0.0)で運動する場合の軌道を C' とする。 このとき、CはAである。 ~くにあてはまる数式をしるせ。 文中の空所 A にあてはまる記述としてもっとも適当なものを、次のaf から 1つ選び、その記号をしるせ。 初に y 軸を通過するときの時刻はt= 図2のように, xy 平面に垂直に, 紙面の裏から表に向かって、磁束密度B の一様な磁 場がかかっているとする。 質量m, 電気量 gg > 0) の荷電粒子が時刻 t = 0 に原点 0から初速度v=v,0) > 0) で運動を開始した。 この粒子が運動開始後に最 1. 文中の空所 う で、そのときの座標は (x,y) = (0, え ) である。 図3のように, y 軸方向正の向きに強さE の一様な電場と, xy 平面に垂直に紙面の裏 から表に向かって、磁束密度 B の一様な磁場の両方がかかっているとする。 質量m,電 気量g(g> 0) の荷電粒子が時刻 t = 0 に原点から初速度 = (0,0)で運動を 開始した。 この粒子のx軸方向, y 軸方向の速度をそれぞれ Ux, Uy, 加速度をそれぞれ Qs, ay とすると,運動方程式は y a.Cと同じ b. Cをx軸に対して反転させたもの C. Cをy軸に対して反転させたもの dCを原点Oを中心として反時計回りに90°回転させたもの e. Cを原点Oを中心として180°回転させたもの 4.Cを原点Oを中心として反時計回りに270°回転させたもの 1. MA や ド 図1 E ひ O 0 B B 図2 図3

回答募集中 回答数: 0