学年

質問の種類

数学 高校生

214. 次に2<a<3のとき 以降がわからないです。 なぜ2<a<3のときf(α)=f(α+1)とするのですか??

332 重要 例題 214 区間に文字を含む3次関数の最大・最小 f(x)=x-6x2+9xとする。 区間 α ≦x≦a +1 におけるf(x) の最大値 M(α) を めよ。 指針 まず, y=f(x)のグラフをかく。 次に, 幅1の区間a≦x≦α+1をx軸上で左側から協 しながら, f(x) の最大値を考える。 なお、区間内でグラフが右上がりなら M (a) = f (a+1), 右下がりなら M (a)=f(a) また,区間内に極大値を与える点を含めば, M (α) = (極大値) となる。 更に,区間内に極小値を与える点を含むときは, f(α)=f(α+1) となるαとαの大小に より場合分けをして考える。 NA CHART 区間における最大・最小 極値と端の値をチェック 解答 f'(x)=3x2-12x+9 =3(x-1)(x-3) f'(x)=0 とすると 増減表から, y=f(x)のグラフは 図のようになる。 [1] a+1<1 すなわち a <0のとき M(a)=f(a+1) =(a+1)³−6(a+1)²+9(a+1) =a³-3a²+4 [2] a <1≦a+1 すなわち 0≦a <1のとき よって x=1,3f(x) a= 9+√33 6 以上から a < 0, ① [4] X f'(x) + (-9)±√(-9)-4・3・4 9±√33 2・3 6 2 <a <3であるから,5√33 <6に注意してα= [3] 1≦a< 9+√33 6 練習 ⑤ 214 めよ。 ≦αのとき 1 0 |極大 4 yA 4 0≦a <1のとき M (α)=4; 1≦a< [2] 9+√33 6 a01 a+1 M(a)=f(1)=4 次に, 2 <α<3のとき f(α)=f(α+1) とすると α3-6a²+9a=α3-3a²+4 ゆえに 3²-9a+4=0 3 0 + |極小| 20 y=f(x) | [3] [4] -1- a3a+1x のとき M(α)=f(a)=α-6a²+9a 9+√33 6 M(a)=f(a+1)=a³-3a²+4 9+√33 6 ≦aのとき M (a)=a²-3a²+4; のとき M (a)=α-6a²+9a [1] 区間の右端で最大 YA 4 /11 1 1 1 4F 基本213 1 a 01 3 Na+1 [2] (極大値) = ( 最大値) YA 4F 最大 Oa 1 3 20.01 +1 [3] 区間の左端で最大 "1 11 7 V 1/ atl 最大 7 a 31 a+1 [4] 区間の右端で最大 YA ya. /3 1 a f(x)=x-3x²9x とする。 区間 t≦x≦t+2 におけるf(x) の最小値m(t) を求

回答募集中 回答数: 0
数学 高校生

106.3 56=2^3×7だから n=p^14(pは自然数)であることはあり得ないから 15=3×5で考えるべきだ。 と頭の中で考えるのは簡単ですが 解答のようにp,qを用いて記述するのがしっくりきません。 p,qを用いない解答例(記述式)があれば教えてください。

472 基本 例題 106 約数の個数と総和 (1) 360 の正の約数の個数と,正の約数のうち偶数であるものの総和を求めよ。 (2) 慶応大] (2) 12" の正の約数の個数が28個となるような自然数nを求めよ。 (3) 56の倍数で,正の約数の個数が15個である自然数nを求めよ。 指針▷ 約数の個数, 総和に関する問題では,次のことを利用するとよい。 自然数Nの素因数分解が N = pag...... となるとき 正の約数の個数は (a+1)(6+1)(c+1)...... E©**** (1+p+p²+...+pª)(1+q+q²+···+q')(1+r+r²+...+pc).….…... (1) 上のN2を素因数にもつとき, Nの正の約数のうち偶数であるものは 2aqb.gc…..... (a≧1,b≧0,c≧0,...;q, r, ・は奇数の素数) 1+ の部分がない。 【CHART 約数の個数, 総和 素因数分解した式を利用 468 基本事項 と表され その総和は (2+2²+...+2ª)(1+q+q²+…+q°)(1+r+r²+...+rc)... を利用し, nの方程式を作る。 (2) (3) 正の約数の個数 15 を積で表し, 指数となる a, b, ・・・・・ の値を決めるとよい。 des 15 を積で表すと, 15・15・3であるから, nは15-11-1または 13-1の形。 となる 解答 (1) 360=2・32・5 であるから,正の約数の個数はAVH-S- (3+1)(2+1)(1+1)=4・3・2=24(個) また,正の約数のうち偶数であるものの総和は ←p,g,r, ….. は素数。 pag're の正の約数の個数は (α+1)(6+1)(c+1) (p,q,r は素数) (2+22+2)(1+3+32)(1+5)=14・13・6=1092 (2) 12"=(22・3)" = 22" ・3" であるから 12" の正の約数が 28 個 であるための条件は (2n+1)(n+1)=28 よって nは自然数であるから n=3 (3)の正の約数の個数は 15 (=15・15・3) であるから, nは 14 または pq2 (p, g は異なる素数) の形で表される。 2n²+3n-27=0 ゆえに (n-3)(2n+9)=0 たら誤り。 積の法則を利用しても求め られる (p.309 参照)。 ONT RJUUS 1=5310 A ◄(ab)"=a"b", (a")"=a™ のところを2m n とし 素数のうち、 偶数は2の みである。 15.1から p15-1g1 5.3 から -13-1 nは56の倍数であり, 56=23.7であるから、n は の形の場合は起こらない。 で表される。したがって, 求める自然数nは n=24・7=784 <p=2, g=7 練習 ② 106 (2)正の約数の個数が3で,正の約数の総和が 57 となる自然数n (3) 300以下の自然数のうち 工の数 求めよ。 (1) 756 の正の約数の個数と、 正の約数のうち奇数であるものの総和を求めよ。 n を求めよ。 重要 例 √√n² +40 指針net よって ここて を利用 このと 更に, CHART 解答 √n²+40=r 平方してn mnは自然 4の約数 また,m+n m+n m-n 解は順に( したがって, 検討 積カ 上の解答の 1つである 答えにたど また,上 の自然数の は、右の が決まるが ある。 ちな という条件 ため、組 しかし, 上 る。なお, 一致する。 更に効

回答募集中 回答数: 0
数学 高校生

106.2 記述これでも大丈夫ですか??

472 基本 例題 106 約数の個数と総和 31/ 00000 (1) 360 の正の約数の個数と、 正の約数のうち偶数であるものの総和を求めよ。 (2) 12" の正の約数の個数が28個となるような自然数n を求めよ。 [(2) 慶応大] (3) 56の倍数で, 正の約数の個数が15個である自然数nを求めよ。 指針▷ 約数の個数, 総和に関する問題では,次のことを利用するとよい。 自然数Nの素因数分解が N = pagere…..... となるとき 正の約数の個数は (a+1)(b+1)(c+1)...... EO (1+p+p²+…+pª)(1+g+q²+…+q¹)(1+r+r²+…+r²)....... 【CHART 約数の個数, 総和 素因数分解した式を利用 (1) 上のNが2を素因数にもつとき, Nの正の約数のうち偶数であるものは 2.gº.y....... (a≧1,6≧0,c≧0, … ; g, , ... は奇数の素数) 1+ の部分がない。 と表され, その総和は (2+22+..+2°) (1+g+q²+ +q°)(1+r+y^+..+rc)... を利用し, nの方程式を作る。 (2) (3) 正の約数の個数15を積で表し, 指数となる a, b, の値を決めるとよい。 15 を積で表すと, 15・1, 53 であるから, nは15-11-1 または'-'g3-1の形。 p.468 基本事項 ④4 ←P, 4, Y, ··· は素数。 解答 (1) 360=232.5であるから, 正の約数の個数は (3+1)(2+1)(1+1)=4・3・2=24 (個) また,正の約数のうち偶数であるものの総和は pg're の正の約数の個数は (a+1) (6+1)(c+1) (p,g,r は素数) の形で表される。 nは56の倍数であり, 56=23・7であるから, nはP2 の形 で表される。したがって, 求める自然数nは n=24.72=784 < 素数のうち, 偶数は2の みである。 (2+2+2)(1+3+3)(1+5)=14・13・6=1092 (2) 12"=(2・3)" = 22" 3" であるから 12" の正の約数が28個 (ab)"=a"b", (a")"=a" であるための条件は (2n+1)(n+1)=28 よって 2n²+3n-27=0 ゆえに (n-3) (2n+9)=0 nは自然数であるから n=3 (3)の正の約数の個数は 15 (=15.1=5・3) であるから, nは または pq2 (p, g は異なる素数) 積の法則を利用しても求め られる (p.309 参照)。 m のところを 2nn とし たら誤り。 15・1から 15-101-1 5・3 から 3-1 の場合は起こらない。 <p=2, q=7

回答募集中 回答数: 0
数学 高校生

106.3 記述これでもいいですか?

472 基本例題106 約数の個数と総和 (①) 360 (2) 12" の正の約数の個数が28個となるような自然数nを求めよ。 (3) 56の倍数で,正の約数の個数が15個である自然数nを求めよ。 p.468 指針▷ 約数の個数, 総和に関する問題では,次のことを利用するとよい。 自然数Nの素因数分解が N = pare…・・・・・ となるとき 正の約数の個数は (a+1)(6+1)(c+1)...... EO (1+p+p²+...+pª)(1+g+q²+···+q°)(1+r+r²+··+²) ******** (1) 上のNが2を素因数にもつとき, Nの正の約数のうち偶数であるものは 2°•g.xc...... (a≧1,b≧0,c≧0, ...;g,r, ··· は奇数の素数 1+ の部分がない。 【CHART 約数の個数, 総和 素因数分解した式を利用 と表され, その総和は (2+2²+...+2ª)(1+q+q²+…+q°)(1+r+r²+...+rº)... を利用し, nの方程式を作る。 (2) (3) 正の約数の個数 15 を積で表し, 指数となる a, b, の値を決めるとよい。 15 を積で表すと, 151 53 であるから, nは15-11-1 または5-13-1 の形。 解答 (1) 360=2.32.5であるから,正の約数の個数は (3+1)(2+1)(1+1)=4・3・2=24(個) また,正の約数のうち偶数であるものの総和は 00000 ←p,g,r, ….. は素数。 14 pg're の正の約数の個数は (a+1) (6+1)(c+1) (p,q,r は素数 積の法則を利用しても求め られる (p.309 参照)。 (2+22+2)(1+3+32)(1+5)=14・13・6=1092 (2) 12"=(22-3)"=22"• 3" であるから, 12" の正の約数が28個(ab)"=a"b", (q""="" であるための条件は (2n+1)(n+1)=28 このところを2mmとし 偶数は201 みである。 よって 2n²+3n-27=0 ゆえに (n-3)(2n+9)=0 nは自然数であるから n=3 (3)の正の約数の個数は 15 (=15・1=5・3) であるから,nは か pg²(p, g は異なる素数) または の形で表される。 nは56の倍数であり, 56=2.7であるから, nは²の形の場合は起こらない。 で表される。したがって, 求める自然数nは n=24.72=784 たら誤り。 <p=2,g=7 15-1515-11-1 5・3から D-13-1 (1) 756 の正の約数の個数と、正の約数のうち奇数であるものの総和を認めた 練習 2 106 (2) 正の約数の個数が3で,正の約数の総和が57 となる自然数nを求めよ。 (3) 300 以下の自然数のうち,正の約数が9個である数の個数を求めよ。 CP. 484 EXTO 指針 n CH 解 √n²+ 平方し m, n 40の糸 また、 解は順 したが 検討 上の 1つ 答え ま の自 は, 例え が決 ある とい ため、 しか る。 一致 10 練習 107

回答募集中 回答数: 0