学年

質問の種類

数学 高校生

数列です。この問題のカッコ2って階差数列で解いてもいいのでしょうか。もし解いていい場合、階差数列であるということが問題文に書いていないのに使っても問題ないのでしょうか、回答お願いします

j≦n, k≦nとして,次の ● 7 数表 正方形の縦横をそれぞれn等分して,n2個の小正方形を作り,小正方 形のそれぞれに1からn2 までの数を右図のように順に記入してゆく. 1 4 6 16 2 3 8 8 15 |にあてはまる数または式を答えよ. 5 6 7 14 (1) 1番上の行の左からん番目にある数はア. 10 11 12 13 (2) 上からj番目の行の左端にある数はイ. : : (3) 上から番目の行の, 左からん番目にある数は, 1≦k≦ウ のとき エ ウ <k≦nのときオ. (4) 上からj番目の行のn個の数の和から最上行のn個の数の和を引くと, となる. ( 京都薬大) キリのいい形で 数を一定の規則によって並べたものを扱う問題は, キリのいい形に着目し, 解決 の糸口をつかもう. 上の例で言えば, 正方形に着目する. 解答 番目の行の左側からん番目にある数を (j, k) とする.例えば, (2,3)=8 (1) (1,k)は図1の正方形に入っている最後の数で, ア= (1, k)=k2 (2)1つ手前は (1, j-1) だから,イ= (j, 1) =(1, j-1)+1=(j-1)2+1 (3) 図2,図3より, ウ=j 図 1 図2より, 1≦k≦jのとき, (j,k)=(j,1)+k-1=(j-1)2+k(=エ) 図3より, j<k≦nのとき, (j,k)=(1, k)-(j-1)=k-j+1(=オ) (4) [引いてから和をとる方が少しラク] (1),(3)より, (j,k) - (1,k)は, (i) 1≦k≦jのとき,エーア=(j-1)+k-k2 (i) j+1≦k≦nのとき, オーア=-j+1 よって、 求める 「和の差」 は, n-jコ n \ { ( i −1 )² + k − k ² } + " (−j+1) [~m= ( − j +.1) + ··· + ( − j+1)] 1.......ろ 図 2 1 kj-lj ウ j-1 2 (-1)² 図 3 1........ S 個

解決済み 回答数: 1
数学 高校生

数Bの数列の問題です 真ん中らへんの緑マーカーの4はどこにいったんでしょうか?

例 題 B1.34 考え方) Un+1=pan+f(n) (p≠1) **** =3, an+1=3an+2n+3 で定義される数列{an}の一般項 αを求めよ. [答] 漸化式 an+1=3an+2n+3 において,を1つ先に進めて+2 と α+)に関す ある関係式を作り, 差をとって,{anti-an}に関する漸化式を導く 答 2α に加える(または引く)nの1次式pn+g を決定することにより、 {an+pn+g}が等比数列になるようにする。 10+1= 30+2n+3 ・・① より、 ante = 3an+1+2(n+1) +3 ...... ② に ①より、 mimi www www an+2-an+1=3(anan)+2l bantiman より, とおくとか考休み、 b=a-a=3a,+2+3-q=11 b+1=36+2, b₁+1=12 bw+1+1=3b"+1), したがって、数列{6m+1} は初項 12, 公比3の等比数列 だから, bm+1=12.3" =4・3" b=4.3"-1 n2のときの係数) n-1 ②は①の を代入したもの +1 差を作り”を消去 する ①より. a2=3a,+2+3=14 α=3α+2 より +m+α=-1 12.3" =4・3・3"-1 (1 12(3"-1-1) =4.3" k=1 カ=-1 3-1 (n-1) n-1 a=a+b=3+Σ(4-3-1)=3+ k=1 第8章 =6・3"-1-n-2=2.3"-n-2 n=1のとき, a1=2・3′-1-2=3より成り立つ。 よって, an=2・3"-n-2 6.3"-12・3・3-1 =2.3" 十四十 n=1のときを確認 2pg を定数とし, an+1+p(n+1) +q=3(a,+pn+g) とおくと an+1=3a+2pn+2g-pおけば an+1+pn+p+q 23=3a + 3pn +3q = もとの漸化式と比較して、 2p=2, 2g-p=3より、p=1,g=2 したがって,att(n+1)+2=3(an+n+2) 4+1+2=6=34.+2pn より,数列{am+n+2}は初項 6, 公比3の等比数列 an=2.3"-n-2a=3 an+1=pan+f(n) (f(n)はnの1次式) 差を作り, n を消去して階差数列を利用して考える +2q-p よって,an+n+2=6・32・3" より Focus 注) 例題 B1.33 (B1-63) のように例題 B1.34 でも特性方程式を使うと, α = 3α+2 +3 よ 3 ant h₁ α=-n-2 3 となる. これより, 順番になっていない と変形できるが, 等比数列を表していないので、このことを用いることはできない. +2 注意しよう [[[]] [Bl 解説参照) よって定められる数列{am}に R1

解決済み 回答数: 1