学年

質問の種類

数学 高校生

解答の場合分けがこのようになっている理由がわからないです。なぜ1で分けているのか教えて頂きたいです。

回転 36 xy 平面上の2次曲線を 9x2+2√3xy+7y2 = 60 とする.このとき,次の各問いに答えよ. 215-36 と曲線 C は、原点の周りに角度0(001)だけ回転すると, ax2+by2 = 1 の形になる.0 と定数a, b の値を求めよ. (2) 曲線C上の点と点 (c, -√3c) との距離の最小値が2であると き,c の値を求めよ.ただし, c0 とする. アプローチ 〔神戸大〕 (イ)曲線を回転させようと考えるのではありません。曲線上の点を回転さ せて回転後の点の軌跡を求める感覚です. そこで曲線 C上の点を (x, y), これを回転した点を (X, Y) とし,x,yの関係式から x, y を消去して, X, Y の満たすべき関係式を求めると考えます.つまり x, y を X, Y で表 してC の式に代入するというストーリーです。そのためには (X, Y) = 「(x, y) を 0 回転した点」 という関係式ではなく (x, y) = 「(X, Y) を -0 回転した点」 という関係式を立式しましょう。これをC の式に代入したら出来上がり です. (口)点(x, y) を原点を中心に角 0 だけ回転した点を (X, Y) とすると, X + Yi = (cos 0 +isin0)(x + yi) です.実部と虚部を比較すると となります. X = x cos 0 - y sin 0, Y = xsin0 + y cos 0 (2)では曲線 C 上の点と (c, -√3c)との距離を考えるのではなく,とも に回転させた曲線と点との距離を考えます.

回答募集中 回答数: 0
数学 高校生

(3)が文字が多すぎてわからないです💦 3つの文字がある時になぜ解答のようになるのか教えて欲しいです!!

第1章 い J 10 第1章 式と証明 基礎問 是 • 42項定理 多項定理 (1)次の式の展開式における[]内の項の係数を求めよ. (ii) (2x+3y) (x³y²] (i) (x-2) (x³) (2) 等式 nCo+mCi+nCz+..+nCn=2" を証明せよ。 (3)(x+y+2z)を展開したときのry'zの係数を求めよ。 精講 2項定理は様々な場面で登場してきます. ここでは I.2項定理の使い方の代表例である係数決定 Ⅱ.2項定理から導かれる重要な関係式 以上2つについて学びます。 2項定理とは, 等式 (a+b)=n Coa"+na" 16+... +nCkan-kbk+... +nCnbn のことで, Cha"-kb (k=0, 1, , n). を (a+b)” を展開したときの一般項といいます。 参考 次に (x+y) を展開したときの一般項は Cirkyk-i したがって(x+y+2z) を展開したときの一般項は 6Ck kCixiy-(22)6-k =26-• Ch* Ci x¹y-iz-k よって, ray'zの係数は k=5, i=3 のときで 216C55C3=26C1・5C2 ポイント =2・6・10=120 11 定数の部分と文字式 の部分に分ける (a+b)" =nCoa+nCian1+..+nCkan-kbk+…+nCnbn 20% (3)は次の定理を使ってもできます. 多項定理 (a+b+c)” を展開したときの abc" の係数は >>n! (x) p!q!r! (p,g,rは0以上の整数で, p+g+r=n) (x+y+2z) を展開したときの一般項は 6! p!q!r!xy(22)=- 276! p!q!r! xyz" p=3, g=2,r=1のときだから求める係数は (p+g+r=6) 答 (別解) (1)(i)(x-2)を展開したときの一般項は Cr(x)^(-2)=Cr(-2)7-'.' r=3のときが求める係数だから < Crx7" (-2)" でも その数 文字 7X6X5 7C3(-2)=- .24=560 3×2 よい 2・6! -=120 3!2!1! (i) (2+3y) を展開したときの一般項は 5C(2.x)(3y)=5Cr・2'35-xTy5-r r=3のときが求める係数だから 5×4×3 5C3・23・32= ・・2・32=720 3×2 sCr(2x)-(3y)" T 文字 もよい (2)(a+b)"=Coa+nCia-16++nCn-ab-1„ C„b" の両辺に a=b=1 を代入すると (1+1)=„Co+„C+..+nCn ..nCo+nC+..+nCn=2" (3)(x+y+2z)を展開したときの一般項は。Ch(x+y)^(2z)6-k 注 1. 多項定理を使うと, 問題によっては,不定方程式 p+q+r=n を解く 技術が必要になります. 注2. (1)(ii)のようにx,yに係数がついていると, パスカルの三角形は使いに くくなります。 演習問題 4 (1) (32y) における ry の係数を求めよ. (2) Co-C1+C2-nCs+..+(-1)"C=0 を証明せよ -

解決済み 回答数: 1
数学 高校生

私は青い線の方法で解いていくのですが演習問題の様な問題で指数部分がn+1じゃないときはどの様にすればいいのでしょうか?解説お願いします🙇‍♂️

190 第7章 数列 問 125 2 項間の漸化式 (IV) a1=0, an+1=2an+(-1)+1 (n≧1) で定義される数列{az} が ある. an (1)bn=mm とおくとき,bn+1 を bm で表せ. (2)6m を求めよ. (3) an=2"bn =1/2"-2" { ""}}=1/12"-2(-1)*-1} 参考 -(2-1-(-1)-1) (IIの考え方で) ①の両辺を (−1)" +1 でわると, an+1 (-1)+1 2an 6 (3)an を求めよ. しる (-1)+1+1 an+1 an .. (-1)+1= ・=-2・ ・+1 ......③ (-1)" 精講 an+1=pan+gn+1 (p = 1, g≠1) 型の漸化式の解き方には,次の2 通りがあります。 ここで,-1)=b, = bm とおくと, (1) 月+1 an+1 =b+1 だから ③よりbn+1=-26+1 .. bn+1- 3 I. Bats-1/2=-2(0-1) I. 両辺を "+1でわり, 階差数列にもちこむ (124ポイント) Ⅱ. 両辺をgn+1 でわり+1 = rb„+s 型にもちこむ この問題ではIを要求していますから, ます。 == 11/3 だから、 にIIによる解法を示しておき bn- (-2)"- . bx-(1-(-2)-1) 191 ①に, a=2"bn, an+1=2+1bn+1 を 6/13--1/1-20-1 an=(-1)"bm=1/2(2"-1-(−1)"-1} 3 注 この問題に限っては, 両辺に (-1)+1 をかけて (-1)"αn=bn と おいても解けます。 解 答 an+1=2an+(-1)+1 ...... ① (1) ①の両辺を2+1 でわると, \n+1 an+1 an ......② 2" 21-2+(-)-2 an =bm とおくとき, n=bm+1 と表せるので 2" [n+1 *) b=b+(-) (2) n≧2 のとき, bm=b1+ +(-/-) k+1 代入してもよい 121 階差数列 ポイント 漸化式は,おきかえによって, 次の3つのいずれかの 118 n-1 初項 1. 公比 - 12/27 演習問題 1252 =0+ 項数n-1の 6 1+ 等比数列の和 E (1) これは, n=1のときも含む. 吟味を忘れずに 型にもちこめれば一般項が求まる I. 等差 Ⅱ.等比 III. 階差 a1=3, an+1=3an+2" n≧1) で定義される数列 {an がある. an =bm とおくとき, bn+1と6の間に成りたつ関係式を求め よ. (2) bnで表せ. (3) α をnで表せ.

解決済み 回答数: 1
数学 高校生

数学 軌跡 反転 この問題を複素数を利用して解く方法を教えてください

184 重要 例題 116 反転 OP・OQ=(一定) の軌跡 00000 |xy平面の原点を0とする。 xy 平面上の0と異なる点Pに対し, 直線 OP 上の 点Qを,次の条件 (A), (B) を満たすようにとる。 (A) OP・OQ=4 (B) Q は, 0 に関してPと同じ側にある。 点Pが直線x=1上を動くとき,点Qの軌跡を求めて、図示せよ。 〔類 大阪市大 指針 求めるのは、点Pに連動して動く点Qの軌跡。 基本110 連動形の軌跡 つなぎの文字を消去して,x,yの関係式を導く P(X, Y), Q(x, y) とすると, 2点P, Qの関係は 点Qが半直線 OP 上にある⇔ X = tx, Y = ty となる正の実数 tが存在する このことと条件(A) から, tを消去して,X,Yを x, yの式で表す。 そして、点Pに関 する条件 X=1より, x, yの関係式が得られる。 なお, 除外点に注意。 点 Q の座標を (x, y) とし, 点Pの座標を (X, Y) とする。 解答 Qは直線OP 上の点であるから Q(x,y) P(X, Y) X=tx, Y=ty (tは実数) ただし、点Pは原点と異なるから t=0, (x, y)≠(0, 0) 更に, (B) から, t>0である。 x2+y2 参考事項 反転 表す ※定点を中心とする半径r (r>0) の円がある。 点を通る直 に, 0と異なる点P をとり, 半直線OP 上に点P' を OP・OP'= によって定める。 このとき,点Pに点P' を対応させることを といい,点を反転の中心という。 また、点Pが図形F上にあるとき, 点P' が描く図形F' をF 反形という。円や直線の反転に関しては,次のような性質が (1)定点 0 を通らない直線の反形は, 0を通る円にな (2) 定点を通る円の反形は, 0 を通らない直線にな (3) 定点を通らない円の反形は, 0 を通らない円に [(1)の証明] O を通らない直線を l とする。 0から lに下ろした垂線と l との交点をP。 とし, Poを反転した 点をP とする。 また l 上のP。 以外の点をPとし,Pを反転した点をP'とする。 OPOP=OPOP' より, OP: OP'=OP : OP であるから、 2組の辺の比とその間の角がそれぞれ等しくなり OPPOP'P よって ∠OP'P'′ = ∠OPP=90° したがって, P'は線分 OP を直径とする円を描く。 ただし, OP'>0であるから, 点0は除く。 [(2) の証明] 線分 OP。 が円の直径となるように、点Po をとり, P 反転した点をP とする。 また, Po以外の点Pを反転した点を (A)から √x2+y2√(tx)2+(ty)2=4 ゆえに t(x2+y2)=4 よって t= 4 x2+ye したがって X= 4x x2+y2. 4y Y= tを消去する。 とすると, (1) と同様にして 4x 点Pは直線x=1上を動くから =1 x2+y2 ゆえに y X=1 に X= 代入する。 4x x2+y2 を 線分OP が直径であるから よって (x-2)'+y2=4 2- したがって,求める軌跡は 中心が点 (2,0), 半径が20円。 0 12 14 x ただし, (x,y)≠(0,0)である から, 原点は除く。 -2- 図示すると、 右図のようになる。 x2+y2-4x=0 注意 本間は、反転の問題 である。 反転については, 次ページ参照。 OPPOP'P ∠OPP=90° よって,∠OP'P'=90°から、点P'は,点P を通り OPに垂 な直線上を動く。 [ [3] の証明] 右の図のように、線分 P.P が円の直径 となるように、点Po, P1 をとり, Po, P, を反転し た点をそれぞれP, P' とする。 また, Po, P, とは異なる, 0 を通る直線と円との 交点をPとし,Pを反転した点をP'とする。 (1)と同様にして AOP POO PC 0 Po

未解決 回答数: 0