学年

質問の種類

数学 高校生

例題48です。 解答の添削をお願いします🙇

86 例題 48 集合の相等の証明 8 例題 46 Zを整数全体の集合とするとき、次の集合A,Bは等しいことを証明せよ。 A=(2x+3yxEZ, yeZ}, B= {3x+5yxEZ, yEZ} 2つの集合の相等 AB を証明するには、次の2つの方法がある。 ① 相等の定義 (p.83) に戻って,次の2つを示す ACB (xEA ならばxEB) BCA (xEB ならばxEA) ② 計算法則の利用 (ド・モルガンの法則やか.79 分配法則の利用) ここでは2は無理であるから、の方針によって証明する。 10 法則 1 正 と (S) (18) (8) (1S-4X8 CHART 集合の包含 相等の証明 [ ① xEA を考える ② 計算法則 [答案 [1] αEAならば a=2m+3n (mEZ, nEZ) と表される。 このとき a =3n+2m=3n+(5m-3m) =3(n-m)+5m Bの要素の形に変形。 n-mEZmEZであるから よって aЄB α EA ならば α∈B が示された。 6=3m+5n(m=Z, nEZ) ACB [2] b∈B ならば と表される。 このとき b=3m+5n=3m+(2n+3n) =3(m+n)+2n m+nEZnEZであるから BEA よって BCA 2.0) ( [1] [2] より, ACB かつ BCA であるから [(SA=B 重要 ACB の証明 「xEA ならば xEB」 を示す。 A B の証明 「ACB かつ BCA」 を示す。 す = =83Aの要素の形に変形。 EBならばbEA が示された。 練習 48 集合 A={n+n|nは整数},B={2n|n は整数}について, ACB である A ことを証明せよ。 48 整数全体の集合Zと集合 A={2x+3y|x∈Z, y∈Z} について,A=Zで B あることを証明せよ。

解決済み 回答数: 0
数学 高校生

2.1 解き方ってこれでも問題ないですよね??

作り の符号で特 を考える とみ を図示 -26 28 2を買 同じ、 2倍 解答 内の 点 (1) AB+EC+FD-(EB+FC+AD) =AB+EC+FD-EB-FC-AD =(AB+BE)+(EC+CF)+(FD+DA) =AE+EF+FA=AF+FA kit. 基本例題2 ベクトルの等式の証明, ベクトルの演算 (1) 次の等式が成り立つことを証明せよ。 AB+EC+FD=EB+FC+AD 3倍 指針 (1) ベクトルの等式の証明は、通常の等式の証明と同 じ要領で行う。 ここでは, (左辺) - (右辺) を変形し て=0 となることを示す。 (2) (ア) x=2a-36-c, y=-4a+56-3C のとき, ya, b,こで表せ。 (イ) 4-3a=x+66 を満たすxをaで表せ。 (3x+y=d, 5x+2y=を満たす,をもで表せ。 を利用するこ 合成 P□+□=PQ, P=PQ ベクトルの計算では,右の変形がポイントとなる。 分割PQ=P+ℓ, (2) ベクトルの加法,減法,実数倍については,数式PQ=Q-□P と同じような計算法則が成り立つ。 向き変え PQ=-QP PP=0・・・ 同じ文字が並ぶと (ア) x=2a-36-c, y=-4a+56-3cのとき, の安心 x-yをa,b,c で表す要領で。 (イ) 方程式 4x-3a=x+66 (ウ) 連立方程式 3x+y=a, 5x+2y=b を解く要領で。 =AA=0 ゆえに AB+EC+FD=EB+FC+AD (2) (7) x−y=(2a-36−č) − (−4ã+5b−3c) =2a-36-c+4a-5b+3c =6a-8b+2c (イ) 4x3x+65から 4x-x=3a+65 よって ゆえに 3x=3a+66 x=a+2b Bi (1) 3x+y=a.. ① x2-② から これを①に代入して 6a-3b+y=a よって 1, 5x+2y=6 =2ab y=-5d+36 00000 ② とする。 CA 384 基本事項 ②③ ... CIDE 左辺(右辺) Sa+da+ sa 向き変えEB=BE など。 合成AB+BE = AÉ など。 検討 A□+□△+△A=0 (しりとりで戻れば ① ) この変形も役立つ。 ただし, それぞれ同じ点。 なお,00と書き間違えな いように。 両辺を3で割る。 6x+2y=2a 1-) 5x+2y=6 x =2a-b 387 1章 ベクトルの演算

回答募集中 回答数: 0
物理 高校生

物理のエッセンス熱の問8について、mNaが1モルの分子の質量になるのがなぜなのか分かりません。単位的にもそうなるとは思えなかったのですが、分かった方は教えて下さると有難いですm(_ _)m

かはないはず) ひx2 = by²2=022 よって 72=30x2 ③,④より F=- Nmv² 3L よって P-E-Nmv²_Nmv² 3L3 P= L2 3 V この結果を状態方程式 PV = nRT= -RT と比べてみれば (PV=) Nmv²_N_RT =hty mv²-3. R.T A NA 2 NA 3 定数は平均に関係しないから、 ギーの平均値を表していることになる。 F N NA 気体の内部エネルギー 1/2mv1.2mに等しく,分子の運動エネル M ③ 分子の平均運動エネルギー 1/2mv=12/2 NT=12/2kT 3 R -mv². NA ちょっと一言 この式は重要。 温度は化学では熱い冷たいの目安に過ぎなかった のが、分子の運動エネルギーで決まっていることがこうして分かった んだ。また,分子が運動をやめる T = 0 が最も低い温度となることも 示唆されている。定数R/NA はんと書いてボルツマン定数とよんでい る。 2乗平均速度√vは分子の平均の速さにほとんど等しい。27℃の酸素の √v^² を求めよ。酸素の分子量を 32,気体定数を8J/mol・K とする。 RO-31XY NAJS WEDR 内部エネルギーU とは分子の運動エネルギーの総和をいう。 そこで単原子分子からなる気体(以下,単原子気体とよぶ) では 3 RT=3 NRT="nRT 気体とよぶ)では U=Nx/1/2mv=N×012 NA 2 29 何原子分子であれ気体の内部エネルギーは絶対温度 Tに比例すること わかっている。 内部エネルギーは温度で決まる小

解決済み 回答数: 1