学年

質問の種類

物理 高校生

大至急です!!!!!!!!!!!!!! 物理の実験なんですけど、この実験から何がわかって何を伝えればいいのかわかりません。助けてください! 3枚目の紙をまとめて提出します!

課題の背景 「物理基礎」 1学期力学分野 パフォーマンス(レポート) 課題 力学は, 物体にはたらく力に着目することによって, 現実に起こる現象を解明・予測する学問で す。一見すると予想と反する現象が観測されたとしても, 物体にはたらく力に基づいて注意深く考 察すると,一貫した原理・原則に従って現象が生じていることを確認できます。 また, 力学の考え 方 力のつりあいや作用・反作用の法則等) を用いると, 物体が静止するという何の変哲もない現 象から, 物体が持つ固有の性質(質量,体積,密度など) を知ることができるのです。 課題 右図に示すように, 台はかりの上に水の入ったビーカーを乗せて, ばねは かりに取り付けられた糸に物体をつるして水中に完全に沈めます。 このと き物体を沈める前と後の台はかりの示す値とばねはかりが示す値をそれぞ れ測定します。 上述の実験を同じ質量 (約115 ~ 120g 程度とする) で異なる 体積を持つ球形の物体 A, B, C (A: 直径4cmの球, B: 直径5cm の球, C:直径 6cmの球) の場合で行います。 ばねはかり 異なる体積の物体を沈めたときの測定結果から, 台はかりが示す値の変化 の規則性について、 以下の点に注意を払いつつ, 分かりやすくまとめてみま しょう。 必要であれば, 水の密度を1.0g/cm3として考えても良いです。 (1) 実験手順を簡潔に示して, 実験によって得られた測定値を正確に, 整理して表にまとめる。 (2) 台ばかりの値の変化の規則性について, 力のつりあいや作用・反作用の法則に基づいて解釈し て,分かりやすくまとめる。 台はかり 本課題を踏まえた発展的内容 上記の実験で見出された法則を活用して, 右図のような複雑な形状を持つ未 知の物体Xの密度 (水の密度よりも大きい) を測定する簡潔な方法を提案し てください。 また, 水の密度よりも小さい物体の密度を測定するにはどのよう にすれば良いでしょうか。 ■本課題における評価ポイント 課題レポートでは,科学的な思考/表現プロセスの全体が評価対象になるので、他の人にも伝わる ように,自分の考え方を, 言葉 数式・図表などを用いながら、 分かりやすく説明してください。 なお,本課題では考察部分の記述から主に次の点について評価します(ルーブリックを参照)。 力のつりあいと作用・反作用の法則を適切に使いこなしている。 • 台はかりが示す値の変化について, ばねはかりの値と関連づけるなど, 実験結果に基づいて科 学的に妥当性の高い考察を提示している。 • 各物体にはたらく力の矢印の作図をするなど, 図表や言葉数式などを用いて, 分かりやすく 書かれている。

回答募集中 回答数: 0
生物 高校生

生物です。 真ん中の分数の式の意味がよく分かりません。 教えてください!

検定され 個体 参考 遺伝子頻度の変化と規則性 A ハーディ・ワインベルグの法則 喫煙の生活においては、突然変異が、遺体的、遺伝子の流入 などによって、遺伝子頼度が変化することを学習したのにステーデルとドイ 主力は、遺伝子度が変化する要因のない生物の集団において、遺伝子組立さ 子型頻度の間に規則性があることを発見した。 親世代 親世代の卵 の精子 A pq P B 自然 実際の生 択がはたら どのように Ⅰ 次世代の遺伝子頻度 PA q a 対立遺 子頻度を 成立して うになっ るが, c の個体 次世代 の自然 対立遺伝子Aとαを含むある生物の集 団において、親世代のAの遺伝子頻度をか とし,αの遺伝子頻度をgとする(p+g = 1)。この集団内で自由に交配が行われ あるとき、子世代の遺伝子型頻度について, 表Iから、遺伝子型AAの頻度は(表Ⅰ ア), Aaの頻度は2pg (同表), aaの頻 度は2 (同表ウ)と表すことができる。 この とき,子世代の理論的な遺伝子頻度はどうなるだろうか。 g pg A a 表Iより, 子世代の対立遺伝子A の頻度は, 22+2pg 2p(p+g) 2 (p2 + 2pg + q2) 2(p+g)2 p p+q = p 第 15 れぞ s= となる。同様に子世代の対立遺伝子αの頻度はg となる。 つまり、子世代のA,αの遺伝 子頻度は,それぞれ親世代のA, aの遺伝子頻度と等しくなっており,遺伝子頻度が世代 をこえて変わらないことがわかる。 このように、ある条件を満たす生物の集団においては,世代をこえて遺伝子頻度が変わ らず遺伝子型頻度は関係する対立遺伝子の遺伝子頻度の積で表される。この法則を, ハーディ・ワインベルグの法則という。 ほうそく 0 ハーディ・ワインベルグの法則が成立するためには,次の5つの理想的な条件を満たし ていることが必要である。 ① 集団の大きさが十分に大きく,遺伝的浮動の影響を無視できる。 ② 注目する形質の間で自然選択がはたらいていない。 ③ 自由な交配で有性生殖をする。 ④ 突然変異が起こらない。 ⑤ 他の集団との間での個体の移入や移出, つまり他の集団との間の遺伝子の流入・流出 がない。 のと 能 と 20 て 25 30 あるという。 この法則が成立していて遺伝子頻度が変化しない遺伝子プールは,ハーディ・ワインベルグ平衡に へいこう 42 52 第1編 生物の進化 衣はいし口

回答募集中 回答数: 0
数学 高校生

(3)と(4)がわからないです!お願いしますm(_ _)m

基礎向 96 倍数の規則 ①から⑥までの数字が1つずつかかれた6枚のカードがある。 これから3枚を選んで並べることにより、3桁の整数をつくる このとき,次のような整数はいくつあるか. (1)2の倍数 3の倍数 4の倍数 6 の倍数 ある整数がどんな数の倍数になっているかを調べる方法は,以下の 精講 ようになります. これを知らないと問題が解けません。 ・2の倍数:一の位の数字が偶数 ・3の倍数 各位の数字の和が3の倍数 ・4の倍数: 下2桁の数が4の倍数 ・5の倍数:一の位の数字が 0 または5 ・6の倍数:一の位の数字が偶数で,各位の数字の和が3の倍数 X Zak ・8の倍数:下3桁の数が8の倍数 9の倍数:各位の数字の和が9の倍数 10の倍数:一の位の数字が 0 30 (2)から6までの数字から3つを選んだとき,その和が3の倍数にな る組合せは, (1, 2, 3), (1, 2, 6), (1, 3, 5), (1, 5, 6), (2, 3, 4), (2, 4, 6), (3,4,5),(4,5,6)の8通り. そのおのおのに対して並べ方が3! 通りずつ. .. 8×3!=48 (個) 右になるほど大きく なるように拾ってい く(規則性をもって) (3)から⑥までの数字から2つを選んで2桁の整数をつくるとき, これが4の倍数になるのは, 12,16,24,32,36,52,5664の8通り。 6-2 そのおのおのに対して,その左端におくことができる数は4通りずつ。 .. 8×4=32 (個) (4)(2)の8通りのおのおのについて,一の位が偶数になるように並べる 方法を考えればよい. (1,2,3)(1,5,6,3,4,5) は偶数が1つしかないので、そ れぞれ2個ずつ. (1,2,6,2,3,4,4,5,6) は偶数が2つあるので,それぞ れ, 2×2×1=4(個) ずつ. (2, 4, 6) はすべて偶数なので, 3!=6(個). よって, 2×3+4×3+6=24 (個) (1)一の位が2, 4, ⑥のどれかになるので,まず,一の位から考えます . ポイント 整数が2の倍数, 3の倍数, 4の倍数, 5の倍数, (条件のついた場所を優先) (2)3の倍数になるような3つの数の組が1つ決まると並べ方は3!通りあり ます. (3) 2桁の数で4の倍数であるものを1つ決めて、その左端にもう1つ数字を おくと考えます. 6の倍数,8の倍数, 9の倍数, 10の倍数 になる条件は覚えておく 解答 (1) 一の位の数字の選び方は2, 4, 6の3通りで,このおのおのに対 して百の位、十の位の数字の選び方は sP2=5×4=20 (通り) 演習問題 96 6個の数 0 1 2 3 4 5 の中から4個の異なる数字を選び, そ れらを並べて4桁の整数をつくるとき,25の倍数は何個できるか、

回答募集中 回答数: 0
理科 中学生

1番の Bの答えが変わらない何ですがなぜ変わらないんですか?Aと Bの角度は大きいほど合力もおおきくなるのではないんですか?

香り 10 力のつり合いや, 力の合成と分解について 調べるために, 図1のような装置を組み, 次の実 験を行った。 あとの問いに答えなさい。 ただし, ばねばかりは水平に置いたときに針が0を指すよ うに調整してある。 また, 糸は質量が無視でき, のび縮みしないものとする。 また, 図 1~3は, 上から見たものである。 [山形] 図2 実験 図 1 ばねばかり3 固定するくぎ り ばねばかり3 ばねばかり1 ばねばかり3 結び目 > (HOLENDE 8 G lo CHHINTRANE ばねばかり2 図2のように, ばねばかり1,2につ けた糸を異なる方向に引いて結び目を点 0に合わせたときの, ばねばかり1~3 の示す値を調べた。 A,Bは,それぞれ の糸と基準線との間の角を表す。 ばねばかり2 (1) A,Bの大きさが等しいとき, ばねばかり1,2は等しい値を示した。 次は, このときの規則性をまとめたものである。 a 葉を,それぞれ書きなさい。 b □にあてはまる言 A,Bの角度の大きさをそれぞれ同じだけ大きくしていくとき,Aの角度 が大きくなると, ばねばかり1の示す値は[ a 値は[ ばねばかり3の示す 図3は, 実験における A, Bの組み合図3 わせの1つを表している。 図3には,こ のときのばねばかり2につけた糸が結び 目を引く力F2を方眼上に示してある。 次の問いに答えなさい。 ① ばねばかり1 につけた糸が結び目を 引く力Fを図3にかき入れなさい。 ② ばねばかり2の示す値が1.0Nのと ばねばかり1 F₂7 ・B OA AB HOME CHINE 基準線 Chimne 水平な台 ばねばかり2 ばねばかり1

回答募集中 回答数: 0
数学 高校生

130. このような具体例(図を書いてみる等)で規則性を考えて解く問題において、どういう感じで記述するのがいいのでしょうか??

582 ①① 基本例題 130 図形と漸化式 (1) ・・・ 領域の個数 平面上に,どの3本の直線も1点を共有しない, n本の直線がある。 次の場合、 平面が直線によって分けられる領域の個数をnで表せ。 (1) どの2本の直線も平行でないとき。 (2) (2) 本の直線の中に, 2本だけ平行なものがあるとき。 指針 (1) n3の場合について,図をかいて考えてみよう。 ヨコ 解答 an (1) n本の直線で平面が α 個の領域に分けられているとする。 (n+1) 本目の直線を引くと,その直線は他のn本の直線で (n+1) 個の線分または半直線に分けられ、 領域は (n+1) 個 だけ増加する。 ゆえに An+1=An+n+1 ¿+(T+5√]$¬1+ よって an+1-an=n+1 また a₁=2 数列{an}の階差数列の一般項はn+1であるから, n ≧2の とき これはn=1のときも成り立つ。 201 ゆえに, 求める領域の個数は __n²+n+2 2 (図のD1~D』)であるが,ここで直線ls を引くと,ls は 42=4 l1,l2 と2点で交わり、この2つの交点で ls は3個の線分また は半直線に分けられ, 領域は3個 (図のDs, Ds, D7) 増加する。 よって as=az+3 2.2-0 PARTY 同様に, n番目と(n+1) 番目の関係に注目して考える。 n本の直線によって α 個の領域に分けられているとき, (n+1) 本目の直線を引くと 域は何個増えるかを考え, 漸化式を作る。 2-14 (2) (n-1) 本の直線が (1) の条件を満たすとき, n本目の直線はどれか1本と平行になる から (n-2) 個の点で交わり, (n-1) 個の領域が加わる。 n-1 an=2+Σ(k+1)=- k=1 n²+n+2 2 (2) 平行な2直線のうちの1本をeとすると,l を除く (n-1) 本は (1) の条件を満たすから,この (n-1) 本の直線で分けら れる領域の個数は (1) から (8+.0) an-1 更に,直線ℓを引くと,ℓはこれと平行な1本の直線以外の 個の点で交わり の領域が増え よって、求める領域の個数は an-1+(n-1)=- (n−1)²+(n−1)+2 2 n²+n 2 +(n-1)=- n=3 Ilz D₂ [類 滋賀大] D3 Do D [=8+₁0 D₁ k=1 Σ(k+1)="Ek+ Z1 =(n−1)n+n-1 D2 a3=7 人 一 (n+1) 番目の直線は n本 その直線のどれとも平行でな いから,交点はn個。 (1) の結果を利用。 l DA αn-1 は, (1) の annの 代わりにn-1 とおく。 e

回答募集中 回答数: 0
理科 中学生

答えがアなのですが、解説お願いします

Ţ 0.3 下部 回路には の向きに力を受 止した。 なお, るものとする。 を何というか、 (2点) ルに力がはた ついて述べた を1つ選び (2点) 4 観察する向き 電流計 U字形磁石 500mA 50mA 5A 消費す 器の抵 (3点) さい。 6 物質のすがた 運動の規則性, 力学的エネルギー 体のつくりと働き 山田さんの所属する科学部では,次の実験を行った。 れをもとに,以下の各問に答えなさい。 図1 [実験] 図1のよ うに、斜面が直 線になるよう に、摩擦力のな いレールと摩擦 力のあるレール テープ をつないで水平 な台の上に設置 図2 テープの長さ 記録タイマー 物体X 点A 点Aの位置で離し た物体Xの運動 問2. 物体Xは, 一辺が2cmの 金属の立方体で、質量は21.6g であった。図4は,4種類の 金属のサンプルの体積と質量 の関係を示したグラフであ 点B 向き」、 旬を用いて 質 した。 物体Xを 点A, 点Bのそ れぞれの位置で そっと離してか ら点Dを通過す るまでの運動 |時間 時間 を,1秒間に60回打点する記録タイマーでテープに記録 した。それを6打点ごとに切り,左から時間の経過順に 下端をそろえてグラフ用紙にはりつけたところ, 図 2, 図3のようになった。 物体Xを点Cの位置でそっと離し たところ,物体は静止したままであった。 図4 AC 水平な台 40 300 エ 摩擦力のない レール 図3 テープの長さ 摩擦力のある レール 問1. 基本 高いところにある物体は、重力によって 落下することで,ほかの物体の形を変えたり、動かした りすることができる。 このように高いところにある物体 がもっているエネルギーを何というか、書きなさい。 賞(2点) 点D 点Bの位置で離し 物体Xの運動 鉄」 そ り脳に伝わる。 間4. よく出る ちの1本の長さ の区間における 間 5. 点A, 点B のあるレール」 それぞれa, b ている式はどこ つ選び、その 由を書きなさ 空気の抵抗に ア. a=b= 1. a=b> ウ.a=b I. a <b *. a> b

回答募集中 回答数: 0