学年

質問の種類

数学 大学生・専門学校生・社会人

統計学の質問です。 問題は1番上のものです。 周辺密度関数、X,Y,XYの平均を求めるときの積分範囲はどうすれば良いのでしょうか。 0<x,y<∞など単純なものであれば何も気にせず積分すればよかったのですが今回のように 0≦x≦y<∞(y=xより上側かつxは0以上の領域)... 続きを読む

4.10 確率変数 X, Y が独立であるとき,次の確率を求めよ。 (1) X, Y が同じ幾何分布に従うとき, P(Y> X). の点の座標をそれぞれ Y,Zとする.そのとき, 線分 QR の長さ L=1. 区間 [0, X] と区間 [X,1] からそれぞれにランダムに1点ずつ Q, Rをとりえ 1. 確率変数と確率分布 64 4.6 確率変数 X, Y の同時密度関数は 1 (x.y) = xp-- 0<z<y<。 f(x, y) = であるとする、ここでa,Bは, a, B > 0, a+ β なる定数である。 (1) X,Y の周辺密度関数 (z). f(y)を求めよ。 (2) X=xを与えたときの Yの条件付き密度関数 fa(ylz) を求めょ (3) X, Y の平均,分散はいくらか. Xと Yの相関係数はいくらか 4.7 XとYは独立な確率変数であって, それぞれ母数が p, q (0 < p,q< 幾何分布 G(), G(q)に従うとする。 このとき, Z= min(X, Y) はどん。 に従うか、また, 平均 E(Z) と分散 V(Z) を求めよ. 肩 4.8 区間 [0, 1]からランダムに1点をとりその点の座標をXとする。次に,1 [X,1] からランダムに1点をとりその点の座標を Yとする, このとき,(1 = の同時分布を求めよ. それぞれの平均と分散,また,X, Y の相関係数を よ。 A9 区間[0.1] からランダムに1点Pをとりその点の座標をXとする。 区間[0.X] と区間 [X,1] からそれぞれにランダムに1点ずつ Q.Rをとりを の平均,分散を求めよ。 .4.11 確率変数 X Yは同じ平む

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

2次元確率分布の期待値について 画像のように期待値は定義されています。 これから離散の場合だと E[X]=Σ[j=1 to r]xj•P(x=xj)と求めることができます。 しかし E[Y]=Σ[k=1 to c]yk•P(Y=yk)を上みたいに簡単に求めることはできない... 続きを読む

(x,9) = f(x)fa(y). X X, Y:独立 Y =yを与えたときのXの条件付き密度関数は f(z,y) f(x, v) h (zl) = *o nal . (z,y) de 18 で定義される。この条件付き密度関数による平均, 分散が Y = yを与えた こ、 ときのXの条件付き平均, 分散である: *00 E[Xy] = E[X|Y=y]= |zf(zl) da , ional VIXl] = V[X|Y=v]= _(x-E[X\v]}"A(zl») dx. 18 午 また、X=ェを与えたときの Yの条件付き密度関数,平均,分散も同様 a である。 4.2 共分散と相関係数 (X, Y) の関数 h(X, Y) の平均は, 確率変数の平均と同様に O X E((X, Y)} = |/ Me,y) dF(x,1) ときで定義され,離散分布と密度型分布に対しては次のように計算される: r E{h(X, Y)} = 2と(x;, Ya)f(x;, Uk) (離散) j=1 k=1 E(h(X, Y)} = | T Ma,y)f(x,v) drdy (密度)。 前述の(E1) - (E4) (19 ページ) と同様な性質に加え,さらに,次の性質が成 り立つ: (E5)関数が直積のときは, 条件付き平均を使って,ー E(h(X)h(Y)} = E(E[h(X)|Y]h(Y)). (E6) X, Y が独立のとき, 関数の積の平均は平均の積に等しい: E(h(X)h(Y)} = E{h(X)}E{ha(Y).

解決済み 回答数: 1