学年

質問の種類

数学 大学生・専門学校生・社会人

統計学の確率密度関数の問題です。 2枚目の資料を参考にして解いていたのですが、難しかったのでどなたか詳しく教えていただくとありがたいです。

問3AさんとBさんが以下でルールが定められたゲームをする。 (ルール 1) 表に 1,裏に0と書かれた1枚のコインを, AさんとBさんがそれぞれ 2回ずつ投げる。 (ルール2) A さんの投げたコインに書かれた数を足し, その値を n とする。同様に Bさんの投げたコインに書かれた数の和も n とする。 (ルール3) -1,0,1と書かれたカードが何枚かあり、2つ束 aとbになっている。A さんは束 a から na枚のカードを引き, Bさんは束b からnB枚のカードを引く。 た だし, 2回引く場合は1枚目のカードをもとに戻してから再度引くこととする。 (補 足1も参照) (ルール4) (ルール3) におけるカードの数の積をそれぞれX,Y と書くことにする。 例えば、Aさんが2枚のカードを引き, その数が 1と1だとしたら, X = -1x1 = -1 である。 また,Bさんが1枚のカードを引き, その数が1だとしたら, Y=1とす る。(補足2も参照) そして,この数X, Y の大きい方を勝者とする。 (補足1) ルール3における束 a と束bにあるカードを引く確率はそれぞれ次で与え られているものとする。 束\数 -1 0 1 1/4 1/2 1/4 1/6 1/2 1/3 a b (補足2) A さんが1枚もカードを引かない場合, X = 0 と定義する。 同様に, B さん においてもカードを引かない場合は Y = 0 とする。 X, Y に対する同時確率密度関数をh(x,y) と書くとき, 次の問いに答えよ。 (1) n=2のときに X = 1 となる確率を求めよ。 (2) (1,-1) を求めよ。 (3) P(X = 1,Y≠0) を求めよ。 (4) AさんとBさんが引き分ける確率を求めよ。 (5) AさんがBさんに勝つ確率を求めよ。 (6) E[X] を求めよ。 (7) E[Y] を求めよ。 (8) X,Y の共分散 C' [X, Y] を求めよ。 (9) V[4X + 12Y ] を求めよ。

回答募集中 回答数: 0
数学 高校生

EX35の解説をお願いします。

252 数学A A={3, 6, 9, 12, 15, 18} B={1, 4,7,10, 13, 16, 19} C={2, 5, 8, 11, 14, 17, 20} 2枚のカードの整数の和が3の倍数になるのは, [1] A から2枚取り出す [2] B, C からそれぞれ1枚取り出す のいずれかであり, それぞれの場合の数は 6.5 [1] 6C2=- -=15(通り) 2・1 EX 035 [2] ,CX,C1=7×7=49 (通り) よって, 求める確率は (2) 1から20までの和 32 = 15 +49 64 190 190 95 1+2+3+ +20=210 は3の倍数である。 よって, 17枚のカードの整数の和が3の倍数になるのは,取 り出さない残りの3枚のカードの整数の和が3の倍数になる ときである。 残す3枚のカードの取り出し方は [1] A から3枚取り出す [2] A, B, C からそれぞれ1枚取り出す [3] B から3枚取り出す [4] Cから3枚取り出す のいずれかであり, それぞれの場合の数は 6.5.4 3・2・1 [1] 6C3 = - =20(通り) [4] 7C3=35 (通り) また, 3枚残す場合の数は よって, 求める確率は [2] 6C1×7C1×7Ci = 6×7×7=294 (通り) 7-6-5 3.2.1 [3] 7C3 = - = 35 (通り) 20 +294 +35+35. ·· 20C3 20 C3通り 384 384 20・19・18 20・19・3 3・2・1 64 32 19.10 95* A, B, Cはそれぞれ 3で割った余りが 01, 2のグループ。 62通り em, nを整数とすると, B, Cの要素はそれぞれ 3m +1,3n+2の形で表 される。これらの和は (3m+1)+(3n+2) =3(m+n+1) であり, 3の倍数となる。 取り出す 17枚につい て考えるのは大変なので、 残りの3枚のカードにつ いて考える。 2個のさいころを同時に投げて、 出る2つの目の数のうち, 小さい方 (両者が等しいときはその 数) を X, 大きい方 (両者が等しいときはその数) をYとする。 定数αが1から6 数とするとき、次のようになる確率を求めよ。 までのある整 [ 関西大 (1) X>a (2) X Sa (3) X=a 2個のさいころを同時に投げるとき, 目の出方は 17枚取り出す場合の 数 2017 通りと同じ。 (4) Y=a 1 (1) X>α となる場合は, X≧a+1 であるから、その場合の 数は 1≦a≦5 として, a+1, a+2, , 5, 6 の異なる 6-(a+1)+1=6-α (個)の中から重複を許して2個取り出 す順列の数で ( 6-α) 通り これは,α=6のときも成り立つ。 よって, 求める確率は (6-a)²(6-a)² - 62 36 (2) (1) の余事象の確率であるから 1- (6-a)²36-(36-12a+a²) 36 36 a-(a-1) 3 36 3 (a-1)²1 36 第2章 確率 a²-(a−1)² 36 a a² 336 (3) 2≦a≦6 のとき, X ≦a-1 となる確率は, (2) の確率にお 別解 (3) 一方が他 いて, a に a-1 を代入すると得られる。 方が α+1, a+2, ......, 5,6のとき X=α となる確率は, X≦αとなる確率から X≦a-1 と、 なる確率を引いて a²-(a-1)² a 1 36 18 36 (1) 小さい方の数が (a+1) 以上になる確率。 <X>6 となる場合はな い すなわち0通り。 ← 「小さい方の数がαよ り大きい」 という事象の 余事象である。 253 (6-a)×2! i 2つともαのとき1通り よって (6-a)x2!+1 36 a 13 36 1/1/201 2a-1 13 a 11 36 36 18 α=1のとき,すなわち X=1 となる確率は, 少なくとも1 個は1の目が出る確率で 1. 52 11 6236 したがって, ① は α=1のときも成り立つから, X = a (1≦a≦6) となる確率は 13a 36 18 方が 1 2, a-1 (4) Y=α となる場合の数は, Y≦α の場合の数から Y≦a-1 (4) 一方がα,他 の場合の数を引いたものである。 Y≦a となる場合の数は, 1,2,.., a-1, α のα個の中 から重複を許して2個を取り出す順列の数で α2 通り のとき (a-1)×2!通り 2つともαのとき1通り よって 2≦a≦6 のとき, Y≦a-1 となる場合の数は, 1, 2, a-2, a-1 の中から重複を許して2個を取り出す順列の数 で (a-1)2 通り よって, Y=a となる場合の数は ²-(a-1)2 (通り) a=1 のとき, Y = 1 となるのは1通りであり, このときも2個の目の数がともに 成り立つ。 1のとき。 ゆえに, 求める確率は 2個とも2以上の目が (a-1)×2!+1 36 18 36 2章 EX

未解決 回答数: 1