学年

質問の種類

化学 高校生

1枚目の問題では、塩酸の水素イオンを考えないで平衡時のモル濃度の変化を考えていたのですが、2枚目の問題では1段目の反応の水素イオンも2段目のところで合わせて考えています。この違いはなんですか?あと塩酸の水素イオン濃度を考えないのはどうしてなんでしょうか?

総 合 | 問 題 1.00 348.硫酸の中和エンタルピー 硫酸は2価の酸であり, 希硫酸中では,硫酸の一段階目の電離反応 ①はほぼ完 全に進行する。 0.89 0.80 0.60 H2SO4 → H++HSO4…① (0.40- 率 一方,二段階目の硫酸水素イオン HSO4の電離反 応②は完全には進行しない。 0.20 0.00 - + HSO4-1 H++SO4²-... ② [U-HA HSO4- SO42 0 20 40 60 -YVNaOH [mL] 80 ☆ビーカーに 0.080mol/Lの希硫酸を40mL入れ,ゆっくりかき混ぜ、水溶液の温度を 測定しながらビュレットから0.080mol/Lの水酸化ナトリウム水溶液を加えていった。 このときの混合液中の硫酸水素イオン HSO4と硫酸イオン SO4の存在比率を図に示 す。 ☆合 実験の結果, 温度はVNaOH=40mL で0.54℃, VNaOH=80mLでは0.76℃上昇した。 た だし,水溶液1mLの温度を1℃上昇させるには溶液の組成によらず 4.2J の熱量が必 要で,熱の出入りは,次の熱化学方程式で示す Q1 Q2 によるものだけとする。 H+aq+OH-aq → H2O (液) HSO-aq → H+aq+SO-aq AH=-Q[kJ] ▲H2=-Q2[kJ] ...3 …④ (1) VNaOH=0mLでの水素イオン濃度 [mol/L] を 有効数字2桁で求めよ。 (2)QQ 有効数字2桁で求めよ。 349. 海水の濃縮図に示すように、陰イオン 換膜 350. 実用! とができ 放電容量 正極活物 Li-xCo 極では, 正木 実用 つくら Li₁- ① まう。 2500g まで (1) m010 3(2) (3) (4) 行 (21 京都大 )

回答募集中 回答数: 0
化学 高校生

eってどのように判断しますか?(NaClの気体が問に出てこないので) あとそれぞれのエンタルピーを出そうと思って写真のように考えてたんですけど、考え方は合ってますか?

思考 発展やや難 H=120C=120=16 283. 格子エネルギー■次の文を読み, (ア) には適切な語句, (イ), (ウ)には有効数字 3 桁の数値, (エ), (オ)には下記の選択肢から選んだ記号を答えよ。 塩化ナトリウムのイオン結晶の生成と溶解について,下の熱化学方程式をもとに考え る。①式から,NaCI(固)の(ア)エネルギーは +788kJ/molであることがわかる。 Na+ (気)が水和して Na+aq となる反応を⑦式に示した。 ヘスの法則を利用して ⑦式中 [k]を求めると(イ)kJ となる。 Cl2 (気)の結合エネルギーを244kJ/mol とする と, Na(気)の第1イオン化エネルギーは(ウ)kJ/mol となる。 以上から,下記の選択 肢の中で, エネルギー的に最も不安定な状態は(エ)で、最も安定な状態は(オ)で ある。 第1章 物質の変化と平衡 熱化学方程式 選択肢 NaCl (固) Na+ (気) +CI- (気) AH = +788kJ ... ① (a) Na+aq+Cl-aq CI (気) +e- → CI- (気) △H=-354kJ ... ② (b) Na (気) +CI (気) 1 (c) Na (固) +Cl2(気) NaCI(固) △H=-411kJ ...③ 2 (d) Na+ (気) +CI- (気) NaCl(固)+aq 02 Hin Na (固) Na(気) AH = +107k ... ④ (e) NaCl(気) NaCl (固) +aq CI- (気) +aq THOONM Na+ (気) +aq V 甲 Naaq+Cl-aq △H = +4.0kJ...⑤ → Cl¯aq △H=-364kJ ...⑥ Na+aq △H=x[kJ] ...⑦ (09 慶応義塾大改) 09

回答募集中 回答数: 0
物理 高校生

(1)について質問です B室のところで圧力をp1として計算しているのはなぜですか?

状態 1 A 室 IS B室 To To L L 265 断熱変化■ 図のように,両端を閉じた長さ2L, 断面積Sのシリンダー内部に, なめらかに動く厚さの無視 できる壁を取りつけ, A室およびB室に区切る。このシリ ンダーおよび壁は断熱材でつくられており, A室内の気体 はヒーターにより加熱できるものとする。 A室およびB室 状態 2 のそれぞれに, 温度 To の単原子分子理想気体1mol を封 入すると,気体の圧力はともに po となり, 壁はシリンダー の中央に静止した (状態1)。 次にA室内の気体を加熱した A 室 B 室 T1 T2 d ところ, A 室内の気体の圧力が上昇し、壁がシリンダーの中央よりd (<L)だけ右 に移動し静止した(状態2)。 A室内の気体が吸収した熱量Qと壁の移動量dの関係を求 めたい。 気体定数をRとする。 (1) 状態2におけるA室内の気体の温度 T, およびB室内の気体の温度T2を, To, L, d, Do, p を用いて表せ。 P1 5 =/1/3とし (2) を, L, d を用いて表せ。なお, 単原子分子理想気体の断熱変化では,y=1/3 po てV'=一定の関係が成りたつことが知られている。 (3)状態1から状態2への変化で,A室内の気体の内部エネルギーの変化 4UA, および B室内の気体の内部エネルギーの変化 4UB を, To, R, L, d を用いて表せ。 (4) A室内の気体がB室内の気体に対してした仕事を Wとする。 4U および 4UB を, QWのうち必要なものを用いて表せ。 (5) Q を, To, R, L, d を用いて表せ。 [22 岡山大 改] 254

回答募集中 回答数: 0
物理 高校生

2枚目の解答のオレンジ線を引いているところについて質問です。 問題にはシリンダーとピストンは断熱材で作られている、と書かれているので断熱変化なのかとおもっていたのですが、ばねがついていると断熱変化では無くなるのですか?

1 264 ばね付きピストン■図のように, なめらかに動くピス トンとヒーターを備えた底面積Sのシリンダー内に1molの単原 子分子理想気体を入れる。 ピストンは, ばね定数んのばねで壁に 連結している。大気圧 のとき, シリンダーの底からピストン までの距離が でつりあい, ばねは自然の長さになっている。シ リンダーとピストンは断熱材で作られ,外からの熱の出入りはな いものとする。 気体定数をRとして、 次の問いに答えよ。 (1) このときの気体の温度T を求めよ。 10000000 ヒーター % k mo (2)次に, ヒーターで熱量Qを与えたら気体の温度は上昇し, ばねはxだけ縮んだ。 次の 気体の各量を求めよ。 (ア) 変化後の気体の圧力(イ) 内部エネルギーの増加⊿U (ウ) 気体が外部にした仕事 W' (エ) 加えた熱量 Q (3) ピストンから静かにばねをはずし, 気体をゆっくりと変化させると気体の圧力はpo になった。 圧力と体積の関係をグラフで表せ。 物

回答募集中 回答数: 0
物理 高校生

名問の森の質問です。 下の問題の(1)と(2)のcが全開の場合と、(3)のcがごくわずかに空いている場合の違いはなんですか?

164 熱 57 熱力学 図1のように、両側にピストン D, Eがついている円筒を, 熱をよ く通す壁Sで2つの部分A, B に 分ける。 円筒とピストンは断熱材 でできている。 Sには弁Cがつい ている。ピストンEをSに押しつ けてCを閉じ, Aの体積Vの部 分に絶対温度 Tの単原子分子の 理想気体n モルを入れておく。 以 下のどの間においても,この状態 から始めるものとする。 気体の比 熱比を 気体定数をRとする。 (1) Dを固定して, Bの体積がV になるまでEを引いて固定して ASB V, T D 図 1 A B V V 図2 A V-AV B 図3 E から,Cを全開にする。 平衡状態(図2)の気体の温度はいくらか。 (2)Dを固定し,Cを全開にしてから,Bの体積がVになるまでEを ゆっくり動かす。 終りの状態(図2)の気体の圧力と温度を求めよ。 (3)Bの体積が V になるまでE を引いて固定する。 Cをごくわずか に開けると同時に, Aの圧力が初めの圧力と等しい値に保たれるよ うにDを押してゆく。 その結果, Aの体積がV-AV になったとこ ろでBの圧力がAの圧力と等しくなった(図3)。この間に気体に なされた仕事を⊿Vを用いて表せ。 また, 終りの状態の気体の温度 (早稲田大) と⊿Vを求め, それぞれTVで表せ。

回答募集中 回答数: 0
物理 高校生

赤線引いたところってなんでそう分かるんですか?🙇‍♂️ 右のグラフを見て吸熱か放熱かパッとわかる考え方教えてください🙇‍♀️

ょう。 これ から 一定量の理想気体をピストン 5 のついた容器に閉じ込め、図 圧力 図10-23 のグラフのように圧力と体積を変化 B させた。 る。 B→Cの過程では,気体の温度を A→Bの過程では、気体の体積を一 定に保ったまま1500Jの熱量を加え A C 一定に保ったまま (1500Jの熱量を加え 0 → 体積 態まで戻し、外部から1000Jの仕事をされた。 る。 C→Aの過程では、気体の圧力を一定に保ったままピストンをAの状 このようなサイクルを描く熱機関の熱効率はいくらか。 た物 すな 化 てび 着目! P-V図を見てもわ 元流でかるように,このサイクルで 解く! 圧力 気体が熱を吸収する過程は、 A→BとB→Cです。 一方, C→Aは外か ら仕事をされ,温度も下がり、熱を放出 する過程です。 吸熱 吸熱 図10-24 END A そこで,熱効率の分母にくる気体の吸 収した熱量は, A→BとB→Cの2つの過 程で吸収した熱量を足せばよいですね。 放熱 → 体積 それを4Q吸収として, 4Q 吸収 =1500+1500 3000 〔J〕 次にこのサイクルで気体が外部にした正味の仕事を求めましょう。 A→Bは定積変化ですから、気体は外部に仕事をしません。 B→Cは等温変化ですので,気体の内部エネルギーの増加⊿Uは0です。 そこで,熱力学第1法則, 4Q=⊿U+PAV で, ⊿U=0ですから,

回答募集中 回答数: 0
化学 高校生

(4)番の解説がわからないです。教えて頂きたいです。

6 窒素と水素との混合気体を一定の条件の下で 適当な解媒を使って反応させると, 次の化学反 応式にしたがってアンモニアが生じる。 100 a N2 (g) + 3H2(g) 2NH3 (g) 積時 ここで, (g) は気体状態を表し、 またこの反 応は可逆反応である。 いま、窒素と水素を 1:3で混合した気体を1.0×10'Pa, 率ン 3.0x107 Paおよび6.0x107 Paの下でいろい 平衡時のアンモニア 平[] 80 60- 40- 201 0 ろな温度において反応させ, 平衡に達したとき のアンモニアの体積百分率を測定して図のよう な結果を得た。 200 300 400 500 600 700 温度(℃] (1) 図に示した曲線 a, b, cのうち, 6.0 × 107 Paの測定結果により得られた曲線はどれ か。 記号で答え、その理由を簡潔に記せ。 (2) この図からアンモニアの生成反応は発熱反応であるか, 吸熱反応であるかを答え よ。 また、 その理由を簡潔に記せ。 (3) 上記の化学反応を, 熱化学方程式で表せ。 ただしH-H, H-NおよびN=Nの結合 エネルギーは,それぞれ436kJ/mol,391kJ/mol および 942kJ/mol である。 (4)窒素と水素とを体積比1:3で混合した気体を, 1.0×107 Pa で, ある温度の下で平 衡状態に達成させ, 続いてこれを温度を変えないで 3.0 × 107 Paに圧縮すると, 混合 気体の密度(g/cm)はどうなるか。 下記の(ア)(イ), (ウ)のうちから該当するものを 選び記号で答え,その理由を簡潔に記せ。 (ウ)3倍より小さくなる (イ) 3倍より大きくなる (ア)3倍になる (5) アンモニアの合成には触媒が用いられる。 触媒の役割について簡潔に記せ。

回答募集中 回答数: 0
物理 高校生

この問題の(1)で、圧力の釣り合いが理解できません😭力の矢印を書いた図を用いて教えて下さると嬉しいです🙇‍♀️

図のような,滑らかに動くピストンのついた断面積Sの容器 がある.容器はピストンを含め断熱壁でできている.容器の底 から,高さαのところに止め具Aがあり,ピストンがこれ以下 に下がらないようになっている.容器内に大気圧と等しい圧力 po, 絶対温度 To の単原子分子の理想気体が入れてある (この状 態を0とする). po 水 Po, To www C |B Ab 玉泉 止め具 Aから高さんの所にあるコックの付いた穴Bから水を コックの高さまで注ぎ, コックを閉める。 次に, 組み込んであ るヒーターから気体に熱をゆっくり加え、容器の上端℃までピストンで動かす. 穴Bから容 器の上端 Cまでの高さをcとする. 水の表面が容器の上端Cに達した後は、水は容器の外に あふれ出る. ピストンの質量および厚さを無視し、重力加速度の大きさをg 水の密度をと して、次の問いに答えよ. 解答は上に与えられた記号 a, b, c, S, Po, To, p, g のみを用い て表せ. (1)ピストンが動き始めるとき (この状態を1とする)の容器内の気体の圧力 p1, 絶対温度T1 定モル比熱 cy モル比熱 を求めよ. その気体の絶対温度と ピストンが

回答募集中 回答数: 0