学年

質問の種類

数学 高校生

(2)で少なくともa>0になるのはなぜですか。

第4章 基礎問 86 第4章 極限 49 関数の極限 (II) 次の式をみたすもの値を求めよ。 (1)/ lim 1-2 av '+2x+8+ 3 x-2 = 4 (2)/lim{vr2-2x+4-(ax+b)}=0 18 (大) mil =lim (1-a)-2(1+ab)x+4-b² →∞ 精講 このタイプもIIB ベク82 で学習済みですが, ポイントになる考え 方は,不定形は 「極限値が存在しない」のではなく, 「存在する可能 =lim- 8 87 (2) lim-2x+4+∞だから、 与式が成りたつためには、少なく P とも,a>0.このとき lim (-2x+4-(ax+b)) →∞ =lim 811 {v-2x+4-(a+b){-2x+4+(x+b)) x²-2x+4+(x+b) -2x+4+ax+b 4-62 (1-a)x-2(1+ab)+· I 2. 4 ・① 1- + b +a+- I (x→ +∞ より 0 と考えてよい 性は残っている」 ということです. (1)では, →2のとき分母→0. このとき, 「分子→0以外の定数」 ならば,極 は∞となるので、2にはならない。よって、極限値が4になるとす れば,「分子→0」 となる以外に可能性は残されていない この極限値が0になるので、1-60,a>0より1 ①式=-(1+b)=0 このとき :.b=-1 逆に,=1,b=-1 のとき, 3 (与式の左辺) = lim = 0 1-0 √x²-2x+4+x−1 ただし、この考え方は必要条件になるので,最後に吟味(=確かめ) を忘れな いようにしなければなりません。 となり確かに適する. 吟味 A ポイント 不定形は, 極限値が存在しないと決まっているのでは

解決済み 回答数: 1
数学 高校生

(2)は判別式と最初に書いてあるa>0の2つの条件のみで解くのはだめですか?g(-1)と軸>-1は必要ですか?

40 逆関数 (s)=var-2-1 (a>02) とするとき、次の問いに答えよ (1) y=f(x) の逆関数y=f(x) を求めよ.(s) ハー (2) 曲線 y=f(x) と曲線 C2:y=f-l(xc) が異なる2点で交わる ようなαの値の範囲を求めよ. (3) C,C2の交点のx座標の差が2であるとき,αの値を求めよ。 (0>x) (x)\S 〈逆関数の求め方〉 精講 y=f(x) の逆関数を求めるには,この式を x=(yの式)と変形し, xとyを入れかえればよい 〈逆関数のもつ性質> I. もとの関数と逆関数で, 定義域と値域が入れかわる Ⅱ. もとの関数と逆関数のグラフは、直線 y=x に関して対称になる 逆関数に関する知識としてはこの3つで十分ですが,実際に問題を解くとき 〈逆関数のもつ性質〉を上手に活用することが必要です. この基礎問では,Iが ポイントになります。 解答 (1)y=√ax-2-1 とおくと, √ax-2=y+1 よって, y+10 より, 値域は y≧-1 ここで,両辺を2乗して ■大切!! ax-2=(y+1)2 . a x = 1/1 (4+1)² + 2/2 (y = −1) a よって、f(x)=1/2(x+1)+12/2(x-1) 【定義域と値域は入れ かわる a a 注 「定義域を求めよ」とはかいていないので,「x≧-1」は不要と思う 人もいるかもしれませんが,この値に対してyを決める規則が関数で ですから、xの範囲, すなわち, 定義域が 「すべての実数」 でない限り は、そこまで含めて 「関数を求める」 と考えなければなりません . (2) y=f(x) y=f'(x)のグラフは,凹凸が異なり,かつ, 直線

解決済み 回答数: 1
数学 高校生

数列です。一番最後の問題って単にnについての不等式だとみてそれを解けたりとかできないですよね?回答お願いします。

●2等比数列・ (ア) a, b, cは相異なる実数で, abc = -27 を満たしている.さらに,a,b,cはこの順で等比数 列であり, a,b,c の順序を適当に変えると等差数列になる.a,b,c を求めよ. (宮城教大) (イ) 初項と第2項の和が135で,第4項と第5項の和が40である等比数列{a}の公比は である.ただし各項は実数とする.また,初項が84で,初項から第5項までの和が290である等 ]である.これら2つの数列{a}, {bm}に関して,an>by が成り立つ 差数列{6} の公差は 最小のnの値は である. C (東京工科大・メディア) a, b, c がこの順に等差数列 bn 3項が等差数列, 等比数列になる条件 であるときa+c= 26, また, x, y, zがこの順に等比数列であるとき, πz=y2 が成り立つ (b-a=c-b; 等差数列・等比数列の大小 π:y=y:zより分かる). {a} が等差数列, {bm} が等比数列 (公 比は正)のとき, (n, an) は直線上, (n, bm) は指数関数のグラフ (下に 凸) 上に乗る. 等差数列, 等比数列の各項の大小はグラフを描くと様子 がはっきり分かる. (右図のように, 2交点の間では, 等差>等比) 解答 (ア) a, b, cはこの順で等比数列だから, ac=62 これとabc=-27より, 63-27 ∴.b=-3 cをαで表して, (a, b, c) = (a, -3, 9/α) ..ac=9 以下, 等差数列の条件を考える. 中央項がどれになるかで場合分けする. 9 a 9 2°a+==2(-3) 1° -3+-=2a 9 3° α+(-3)=2• a 1° のとき,2a2+3a-9=0 . (a+3) (2a-3)=0 a = bよりα キー3だから, a=3/2 ..c=6 2°のとき,a2+6a+9= 0 .. α=-3 これは α = 6に反する. 3°のとき, α2-3a-18=0 ∴ (α+3)(a-6)=0 以上から, (a,b,c) = (3/2, 3, 6), (6, -3, 3/2) (イ) {a} の初項をα 公比をとおくと, an=arn-1 a1+az=a+ar=α(1+r)=135 astas=ar3+ara=ar3(1+r)=40] a=6 12 \3 27 82 2|3 123 an 中央項がα, b, c で場合分け. 1° は αが中央項で, b+c=2α と なる. 2° はんが中央項, 3° はc が中央のとき. α=6のとき,c=9/6=3/2 [(イ) 後半の方針] > b は解 ... ける不等式ではない。最小の を求めたいので, n=1,2, … から 順に調べていくのが早い.なお, 座標平面上に (n, an), (n, bm) をプロットすると下図のように なる. より3= ar3(1+r) 40 a (1+r) 135 よって,r=" a=. 2 3' 135 135 -=81 1+r 5/3 b1+65 84+ (84+4d) {6} の公差をd とおく. b1 ~ 65 の和=- ・5= ・・5 が 290 Y 2 2 なので, (84+2d) ・5=290 2\n1 .. 42+d=29 .. d=-13 -y=97-13x y=810 a1 an=-81-1 ·(323), b₂=84–13(n−1) n 1 2 3 4 5 6 7 32 64 an 81 54 36 24 16 3 9 と表よりan>bmとなる最小のnは7. bi b² b3 bbs be at az 03 Sasas b 84 71 58 45 32 19 6 01234567 46 67 48 2

解決済み 回答数: 1
数学 高校生

(2)です。僕の解き方でどこが間違っているか教えてください

c 2直線の交点を通る直線の方程式 2直線 x+2y-4=0, 2x-y-30 に対して, 方程式 k(x+2y-4)+ (2x-y-3)=0 ① の表す図形とは? ただし, kは定数とする。 k=1 k=0 k=2 ① は, 連立方程式 x+2y-4=0, 2x-y-3=0 2x-y-3=0 2 の解x=2, y=1に対して常に成り立つ。 k=-1 1. x=2, y=1は2直線上の点なので x+2y-4に代入しても0 2 4 x 2x-y-3に代入しても 0 -3 x+2y-4=0 よって, kがどのような値をとっても ①は, 2直線の交点(2, 1) を通る図形を表す。 x=2, y=1 を代入したら式が成り立つので ① を x, y について整理すると (k+2)x+(2k-1)y-4k-3=0 ここで,x,yの係数k+2, 2k-1は同時には0にならない。これは直線の式なので 方程式 ① は, 2直線の交点を通る直線を表す。 (図のように,kの値によって (21) を通る直線がいろいろ決まる) ただし, 直線 x+2y-4=0は表さない。 (式) = 0 の形で表された2直線について k(式1こ目) + (式2こ目) = 0 は,交点を通る直線である。 例8 2直線x+2y-4=0, 2x-y-3=0の交点と点(-1, 5) を通る直線の方程式は? を定数としてk(x+2y-4)+(2x-y-3)=0 とすると,①は2直線の交点を通る直線を表す。 この直線が点(-1, 5) を通るとすると, ① に x=-1, y=5を 代入して ゆえに 5k-10=0 k=2 これを①に代入して整理すると 4x+3y-11=0 ①のなかから,(-1,5) を通る 「当たり」 の直線を見つけている。 [終]

解決済み 回答数: 1