学年

質問の種類

数学 高校生

数A 組み合わせ カの問題がなぜ答えのようになるのかが分かりません。 教えていただけると嬉しいです!

8 以下は自然数, は以下の自然数とする。 次の先生と百まんさん に当てはまる記号や数式, 数字を とイヌワシ君の会話を読み、 答えよ。 大間 8 は解答欄に答のみを記入せよ。 先生:C の値をどのように考えたらいいと思う? 百まんさん: n個から0個とる組合せの総数なので0じゃないのかな。 イヌワシ君:まって, 確か。 Po=1,0!=1 と定めたはずだよ。 このことと, ア C, C,= 7! と表されることから,Co= イ と定め るといいんじゃないかな。 先生:その通り。 他の考え方もあり, 例えば6人から4人を選ぶことは, 選ば ない2人を決めることと同じなので, 6C4 = C2 の等式が成り立ちます。 一般に,n個から個取る組合せの総数は, n個から ウ個取る組 合せの総数と同じなので,nC=n = "q ・①の等式が成り立 (ウ) つ。 これより C の値は I と等しいと考えることが出来るので Cは(イ)と言えます。 百まんさん: ①の他にもCに関連する等式はありますか? 先生: 1 C, C,+C1-1 ・・② という等式が成り立ちます。 まんさん:例えばC=C+オ となるはずですね。確かめてみま す•••••• ほんとだ, 確かに両辺とも126になっています。 先生 ②の等式は次のように説明出来ます。 1.2.3.. +1のn+1枚 のカードから枚取る組合せを のカードに注目して、次の2つの 組合せのグループに分けます。 (A) 1 のカードを含んでいる組合せのグループ (B) のカードを含まない組合せのグループ (A) は カ通りあり、(B) はキ通りあります。 n+1枚のカードから枚取る組合せは必ず (A) か (B) のいずれかの グループに含まれているので,②の等式が成り立ちます。 イヌワシ君: なるほど。 この考え方を応用すれば新しい等式を作ることが出来 そうです。 を2以上の自然数として,n+2枚のカードからr枚 取る組合せを (A) 1 を含む組合せ (B) 1 を含まず 2 を含む組合せ (C) I も2も含まない組合せ に分類して考えると, 新しい等式が得られるのではないで しょうか。 先生 さすがイヌワシ君。 よく出来ました。

回答募集中 回答数: 0
数学 高校生

(1)(2)で同様に確からしいものが違うんですけど、それによって何が変わり、問題を解くのかわからないです。

118 道の確率 右図のような道があり, PからQまで最短経路で すすむことを考える.このとき,次の問いに答えよ. (1) 最短経路である1つの道を選ぶことが同様に確 からしいとして, R を通る確率を求めよ。 P R (2) 各交差点で, 上へ行くか右へ行くかが同様に確からしいとき 精講 Rを通る確率を求めよ. (1) 題意は「仮にPからQまで道が5本あったとしたら,1つの道 を選ぶ確率は1/3」ということです. (2)題意は「ある交差点にきたとき,上または右を選ぶ確率がそれぞれ1/2」と いうことです. A =(BUA 解答 (1) PからQ まで行く最短経路は 4779 4! 3!1! -=4(通り) (4C1 でもよい) また,PからRまで行く最短経路は /→ 3! 31 2!1! -=3(通り) (3C1 でもよい) 211 ×1 RからQまで行く最短経路は1通りだから 104 PからRを通りQまで行く最短経路は 3×1=3(通り) ※通りたい点 いったん区切って 考える 3 よって, 求める確率は 4 (2)(1)より、題意をみたす経路は3本しかないことがわかる. ここで, A, B, C, D を右図のように定める. i) P→A→B→R とすすむ場合, 進路が2つある交差点はPのみ. よって,i)である確率は1/2 B R PCD

回答募集中 回答数: 0