学年

質問の種類

物理 高校生

(9)はどうして赤ペンのような式になるんですか?? 私の考え方のどこが間違えてるのか教えて欲しいです🙇🏻‍♀️

II 次の文章の空欄にあてはまる数式, 数値または語句を, それぞれ記述解答用紙の所 定の場所に記入しなさい。 ただし, (1)~(10)の解答欄には数式または数値を, (11)の解答 欄には語句を記入しなさい。 (33点) 図1に示すように抵抗とコイルをつないだ回路で, スイッチSを閉じたり開いた りしたときに回路に流れる電流を考えよう。 電池の起電力をE, コイルの自己インダ クタンスをL, 2つの抵抗の抵抗値は図1のように r, R とする。 電池と直列につな がれた抵抗値rの抵抗は電池の内部抵抗と考えてもよい。 また, 導線およびコイルの 電気抵抗は無視できるものとする。 b a d E 図 1 h In R g ERO h S スイッチSを閉じた後のある時刻にコイル, 抵抗値 R の抵抗を図1の矢印の向き に流れる電流をそれぞれ I, I と書くことにする。このとき, 抵抗値の抵抗を流れ る電流は (1) となる。 経路 abdfgha についてキルヒホッフの法則を適用すれ ば、電池の起電力と回路に流れる電流の間にはE= (2) の関係が成り立つ。 一方、このときコイルを流れる電流が微小時間 4tの間にだけ変化したとすると, -10- LI+(r+B)I

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

ミクロ経済学の問題です! 解説も含めて教えてください🙏

問2 次の設問に答えなさい。 解答の際には答だけではなく、 導出過程も含めて示すこと。 (1) ある団子店の団子は、1本の価格が100円のとき一日の需要量は200本である。 この団子の需 要の価格弾力性が1.2のとき、 この団子を1本120円に値上げすると需要量は何本になるか。 (2) 需要の価格弾力性がつねに 0 となるような需要曲線を描きなさい。 (3)需要曲線がD=a/p (ただしa>0,p>0) で表されるとき、 需要の価格弾力性を求めよ。 (4) 需要の価格弾力性がつねに1となるような需要曲線のグラフを描きなさい。 ' 問3 Aさんは干し柿を作っている。 干し柿の生産関数は、 生産量をx (個) 労働投入量をL (人) として、x=100L.5 と表される。 以下の問に答えよ。 解答の際には答だけではなく、 導出過 程も含めて示すこと。 (1) 労働の限界生産物を求めなさい。 (2) 労働の限界生産物が逓減することを示しなさい。 (3) 生産関数を労働投入量Lについて解きなさい (つまり=.. の形に変形しなさい) (4) 機械などの固定費用が9万円、 労働者を1人雇うのにかかる人件費が1万円であるとしよう。 この干し柿の費用関数 (c) を求めよ。 (5) (4) で求めた費用関数をグラフに描きなさい。 ' • (6) (4) で求めた費用関数をもとに、 限界費用 (MC) 平均費用 (AC) 平均可変費用 (AVC)を数式で示しなさい。 · (7)限界費用 (MC) 平均費用 (AC) 、 平均可変費用 (AVC)、 (4) で描いたグラフの下 に、 横軸の縮尺を変えずに描きなさい。 その際、 費用関数との関係がわかるように描くこと。 ヒント:ACについては数学Ⅲを習っていない人には一見すると難しいかもしれないが、 例えば10 個くらい点をプロットし、それらを結んで概形を描いてみよ。 その際、 最小値がどこを通過する のかしっかり明示すること。 (8) この干し柿の短期の供給曲線を (7) で描いたグラフ中に示しなさい。

回答募集中 回答数: 0
化学 高校生

これの(iii)の解き方が全くわかりません。どうして[H2]=[I2]になる?そもそもどうして平均を取ったりできるの?また、0,100と0,085っていう濃度はどこから出したのですか?詳しく教えていただけると嬉しいです。反応速度ほんとに苦手で、、、

156 問題 命化ボ 医情Ⅰ 科報ツ 2024年度 生文ス (4) 下線部(b) に関連する次の文を読み、問い (i) ~ (vi) に答えよ。 ただし、物質はすべて気体として存在し、容器内の全圧は反応によ て変化しないものとする。と 水素とヨウ素の反応は次のように表される。 同志社大学部個別日程 志社大学部個別日程 [mol/L] 0.100 9.085 0.075 H2 + 12 2HI [Hz] 化学 この反応は正反応と逆反応が同時に進行する ( き ) 反応である。 水素分子 (H-H), ヨウ素分子 (HI), ヨウ化水素分子 (H-I)の結合 エネルギーがそれぞれ 432kJ/mol. 149kJ/mol, 295kJ/mol である 0.050 ② 0.025 0.000 0 50 50 2024年度 文化情報 科報ツ 生命医科 ので、この正反応の反応熱は水素1molあたり(く)灯である。 正反応の反応速度(水素が消費される速度)をv.逆反応の反応 速度 (水素が生成する速度)を とすれば, v=k」 [H2] [12] 2k2 (け) -100 ③ (40) ④ と表される。ここで [X] は物質 X の濃度 [mol/L] を表す。 またk およびk2 はそれぞれの反応の反応速度定数である。 0.100 mol の水素と0.100 molのヨウ素を容積が1.00Lの容器に閉 じ込め,温度を一定に保ったところ, 混合してからはじめの200秒の 間に水素の濃度が図2のように変化した。 しかしながら時間が十分に 経過すると水素とヨウ素の濃度はいずれも 0.020mol/Lとなりそれ 以降は変化しなかった。 このような状態を平衡状態と呼び, 反応②の 平衡定数K と反応速度定数k, およびk2の間には次のような関係式が 成り立つ。 K= (こ) 和 化 100 150 200 [s] 時間 図2 水素の濃度の時間変化 (i) 文中の(き)にあてはまる最も適切な語句 (く)に あてはまる整数(け)(こ)にあてはまる最も適切な 数式を記せ。 (ii) グラフから50秒後の水素の濃度を読み取り,はじめの50秒に おける正反応の反応速度v 〔mol/ (L・s)] を有効数字2桁で 答えよ。 (ii)(ii)の結果を利用してはじめの 50 秒におけるk 〔L/ (mols)] を有効数字2桁で求めよ。 ただし、この時間での逆反応の寄与 は無視せよ。 (iv) 解答欄のグラフには図2と同じ水素の濃度変化を表す曲線が記 入してある。 これを参考に、解答欄のグラフに0秒 100秒 後 200 秒後のヨウ化水素の濃度を表す点を記入せよ。 (v)この温度における反応 ②の平衡定数Kを有効数字2桁で求めよ。 他の条件は変えずに, (a) 触媒存在

回答募集中 回答数: 0
物理 高校生

どうしてマーカーの式になるのか教えて欲しいです🙇🏻‍♀️ (き)と(く)です。

14 2022年度 物理 立教大理 (2/6) VI.次の文を読み、下記の設問1.2に答えよ。 解答は解答用紙の所定欄にしるせ 電場や磁場の影響を受け, xy 平面上を運動する荷電粒子を考える。 図1のように, y 軸方向正の向きに強さE の一様な電場がかかっているとする。質量m, 電気量g(g > 0) の荷電粒子が時刻 t = 0 に原点から初速度v=v, 0 ) ( 0 ) で運動を開始した。時刻でのこの粒子の位置は である。 (x, y) = ( い ) 立教大理(2/6) max= お ma か 2022年度 物理 15 となる。このことから,この粒子の運動は, by 座標系に対し一定の速度 (きく で運動する観測者から見ると円運動であることがわかる。 この粒子が xy 平面上に描く軌 道をCとする。 また, 質量m 電気量gの荷電粒子が原点Oから初速度 =(0.0)で運動する場合の軌道を C' とする。 このとき、CはAである。 ~くにあてはまる数式をしるせ。 文中の空所 A にあてはまる記述としてもっとも適当なものを、次のaf から 1つ選び、その記号をしるせ。 初に y 軸を通過するときの時刻はt= 図2のように, xy 平面に垂直に, 紙面の裏から表に向かって、磁束密度B の一様な磁 場がかかっているとする。 質量m, 電気量 gg > 0) の荷電粒子が時刻 t = 0 に原点 0から初速度v=v,0) > 0) で運動を開始した。 この粒子が運動開始後に最 1. 文中の空所 う で、そのときの座標は (x,y) = (0, え ) である。 図3のように, y 軸方向正の向きに強さE の一様な電場と, xy 平面に垂直に紙面の裏 から表に向かって、磁束密度 B の一様な磁場の両方がかかっているとする。 質量m,電 気量g(g> 0) の荷電粒子が時刻 t = 0 に原点から初速度 = (0,0)で運動を 開始した。 この粒子のx軸方向, y 軸方向の速度をそれぞれ Ux, Uy, 加速度をそれぞれ Qs, ay とすると,運動方程式は y a.Cと同じ b. Cをx軸に対して反転させたもの C. Cをy軸に対して反転させたもの dCを原点Oを中心として反時計回りに90°回転させたもの e. Cを原点Oを中心として180°回転させたもの 4.Cを原点Oを中心として反時計回りに270°回転させたもの 1. MA や ド 図1 E ひ O 0 B B 図2 図3

回答募集中 回答数: 0
数学 高校生

加法定理の問題です。 画像の線を引いてあるところがわからないので、解説お願いしたいです。 よろしくお願いします。

第2問 (必答問題) (配点 15 太郎さんは、ボールをゴールに蹴り込むゲー ムに参加した。 そのゲームは、 右の図1のように地点 0か ら地点Dに向かって転がしたボールを線分 OD上の1点からゴールに向かって蹴り 地点 Aから地点Bまでの範囲にボールが飛び込んだ とき,ゴールしたことにするというものであっ B 3m ル ボールが転がされ、 ボールを蹴るライン A 3mi 2m 0 9m 図1 た。 ただし, ボールは点とみなし, 大きさは考えないものとする。 そこで太郎さんは, どの位置から蹴るとゴールしやすいかを考えることにした。 地点を通り,直線ABに垂直な直線上に, AB // CD となるように点Cをとる。 さらに,太郎さんは, 0を原点とし、 座標軸を0からCの方向をx軸の正の方向、 OからBの方向をy軸の正の方向となるようにとり, 点Pの位置でボールを蹴るこ とを図2のように座標平面上に表した。 B. (5.0) B4 (2.0) A 0 図2 このとき 2点A, B の座標はA(0, 2), B(0, 5), ボールを蹴るラインを表す直 太郎さんは、最もゴールしやすいのは、 APBの大きさが最大になる地点Pであ ると考えた。 「レーの ∠APBの大きさが最大となる点Pの座標を求めよう。 ア イ (0<x9) とし、 図2のように, 2直線AP, BP とx軸の正の 向きとのなす角をそれぞれα, βとする。 この である。 クリー x- ウ x- エオ tana= tanβ= イ イ 1x <APB=a-B と表され、∠APBがらになることはないから,tan (e-β)を考え ることができる。 カキx tan (α-β)= となり, ケー コサx+ シス 常にクケコサx+ シス >0であるから, 0x9のとき, tan (α-β) > 0 である。 0 カキ さらに, tan (β)= と変形でき, 0<x≦9の範囲で シス タケ x+ コサ x シス タケ x+ は最小値 センをとる x ア 線 OD の方程式はy= x と表すことができる。 イ (数学Ⅱ, 数学 B 数学C第2問は次ページに続く。) (第3回-5) 以上のことから、点Pのx座標が タ のとき, ∠APBの大きさは最大である ことがわかる。 (第3回-6)

未解決 回答数: 1