学年

質問の種類

数学 高校生

相加平均相乗平均の問題です 最初になにをしてるんですか?

(7) 件の確認が必要である平均)(相乗平均)を利用。 人にように定数を補い, (相加平均) ≧ (相乗平均)を利用。 CHART & SOLUTION 基本 積が定数である正の数の和の最小値 (相加平均) ≧ (相乗平均)を利用 吉日と白の大小関係 2 から a+bの最小値を求めることができる。 CH 式の 2式 べる を求 基本 例題 31 相加平均・相乗平均を利用する最小値 (1)x>0 のとき, x+-の最小値を求めよ。 9 証明せよ。また、毎号 基本 (2)x>0 のとき, x+ 9 x+2 の最小値を求めよ。 0< p.42 基本事項 5. a+bz√ab において, ab=k(一定)の関係が成り立 → 解答 (1)x>0, 20であるから,相加平均と相乗平均の大小関 ↓ 相加率) 9 係により 9 相加平均と相乗 大小関係を利用する この x+2 X・ =2.3=6 XC x 解答 等号が成り立つのはx=- 9 明 すなわち x=3のとき。 9 x ← x=- よって、x=3で最小値6をとる。 を明示する。 =から=9 x x>0 であるからょ a+ 0<d よっ 20 (2)x+ 9 x+2 =x+2+ 9 x+2 また -2 x>0より x+2>0, 9 x+2 ->0 であるから, 相加平均と相 2つの項の積が足 なるように,x+20 を作る。 した であ [1] 乗平均の大小関係により [2] x+2+ ≧2. x+2 =2.3=6 x+2 x+2 ゆえに9x+29_2 x+2 -2≧6-2=4式の値が4になるよ M 値が存在する [3] 等号が成り立つのは x+2= 9 のとき。 x+2 このとき (x+2)2=9 とを必ず確認する。 立号成立は 9 した x+2>0 であるから x+2=3 (2) x>1 のとき, x+ 1 の最小値を求めよ。 x-1 したがって, x=1で最小値4をとる。のときされ PRACTICE 31実の方 3 b,c,dは正の数と (1) x>0 のとき, x+ 16 次の不等式が成り立つことを証明せよめ の最小値を求めよ。 北平米日(日) ORA 2- 5-0 ゆえに x+2= x+2 96 x=1 かつ x+2+- x+2 2(x+2)=6 として求めてもよい

未解決 回答数: 0
数学 高校生

新高1の入学前課題です。 ⭕️がついている問題のうち、青い丸がついていない4問を解説していただきたいです。(解説がついていない問題集なため)そして、5番の7分の13〜〜とかの問題は素直に割りまくるしかないのでしょうか?

問題 第2節 実数 43 第1章 13 7 を小数で表したとき, 小数第50位の数字を求めよ。 he → p.29~31 数と式 6 αが次の値をとるとき,|-3|-|a+2の値を求めよ。 (1) a=0 p.34.35 2a=-3 2 170 4 4 3 a=√5 が次の値をとるとき,(x+1)" の値を求めよ。 x=3 Op.37 2 (2)x=-1 (3) x=-√√5 次の(1),(2)の式を計算せよ。また,(3)~(5)の式の分母を有理化せよ。 (1) 2√/27-3√12+√54 √3-1 √8 → p.38~40 (2)(√3+√6) 2√3+√2 3-√3 √3-√2 √√6 (1-√3) 9 √2 =1.4142 とするとき, 次の値を小数第4位まで求めよ。 ただし, 必要であれば小数第5位を四捨五入せよ。 → p.39, 40 √2 2 3(√2-1) √5-√3 √5+√3 10 x= y= √5+√3 √√57√√3 のとき,次の式の値を求めよ。 p.41 x2+y2 xy+xy3 ((3) x y y x 11 実数aに対し, n≦a を満たす最大の整数nをαの整数部分といい a-nをαの小数部分ということにする。 たとえば, 3.1の整数部分は 3であり,小数部分は 3.1-3=0.1 である。 このとき、次の実数の整数部分と小数部分を求めよ。 (1) 1.25 (2)√3 (3) -3.1 (4) /10-3

未解決 回答数: 1
数学 高校生

数Ⅱの問題です (y + z)/x = (z + x)/y = (x + y)/z の時、この式の値を求めよ。の問題の解答で … y + z =xk …① z + x =yk …② , x + y =zk …③ ①+②+③から とあるのですが、なぜ①②③を足すのですか。

基本 例題 26 比例式の値 00000 y+z z+x= x+y のとき、この式の値を求めよ。 x y 基本25 CHART & SOLUTION 比例式はんとおく 等式の証明ではなく,ここでは比例式そのものの値を求める。 y+z=z+x=x+y=kとおくとy+z=xk, z+x=yk, x+y=zk x y 2 この3つの式からkの値を求める。 辺々を加えると,共通因数 x+y+z が両辺にできる。 これを手がかりとして, x+y+z またはの値が求められる。 求めたんの値に対しては, (母)≠0(x=0, y = 0, z≠0) を忘れずに確認する。 解答 分母は0でないから xyz=0 y+z=z+x=x+y=kとおくと x y z 0> 0< y+z=xk...1,z+x=yk...②, x+y=zk ③ ①+②+③ から よって ゆえに 2(x+y+z)=(x+y+z)k (k-2)(x+y+z) = 0 k=2 または x+y+z=0 [1] k=2 のとき ① ② ③ から ←xyz≠0 x≠0 かつ y≠0 かつ z=0 d $100.0 y+z=2x... ④, z+x=2y… ⑤, x+y=2z… ⑥ ④ ⑤ から y-x=2x-2y よって x=y x+x=2z よって x=2 x+y+z が 0 になる可 能性もあるから, 両辺を これで割ってはいけな い。 これを⑥ に代入すると したがって x=y=z x=y=z かつ xyz ≠0 を満たす実数x, y, zの組は存在する。 [2] x+y+z=0 のとき y+z=-x k=y+z=-x=-1 よって XC XC [1], [2] から, 求める式の値は 2, -1 O 例えば x=y=z=1 例えば, x=3, y=- z=-2 など,xyz かつ x+y+z=0 たす実数x, y, zの 存在する。

回答募集中 回答数: 0