学年

質問の種類

数学 高校生

数IIの問題です 棒線部分の一致するときを どうして考えないといけないのでしょうか 対象な点と問題にあるので、点PとQは一致する場合を考える必要はあるのでしょうか

例題 100 直線に関する対称移動 x+y=1 に関して点Qと対称な点をPとする。 点Qが直線 2y+80 上を動くとき、点Pは直線[ CHART & SOLUTION 対称 直線に関して PとQが対称 [[1] 直線 PQ がに垂直 [2] 線分 PQ の中点が上にある 上を動く。 000 基本 Qが直線x-2y+80 上を動くときの, 直線 l x+y=1 に関して点Qと対称な点 Pの軌跡、と考える。 つまり, Q(s, t) に連動する点P(x, y) の軌跡 ①s, tax,yで表す。 ②x,yだけの関係式を導く。 直線x-2y+8=0 ...... ① 上を動く点をQ(s, t) とし, 直線 x+y=1 2 に関して点Qと対称な点を P (x, y) とする。 4」 inf線対称な直線を求め ①るには、 EXERCISES Q(s,t) あるが、左の解答で用いた 軌跡の考え方は、直線以外 71 (p.137) のような方法も 1 の図形に対しても通用する [1] 点PとQが一致しない とき, 直線 PQ が直線 ② に垂直であるから -8 01 /P(x,y) t-y.(-1)=-1 垂直傾きの積が一 S-XC 線分 PQ の中点が直線②上にあるから x+y+t=1 2 2 ④ s-t=x-y ④から ③から s+t=2-(x+y) s, tについて解くと s=1-y, t=1-x また,点Qは直線 ①上の点であるから ⑤⑥に代入して すなわち s-2t+8=0 •••••• ⑥ (1-y)-2(1-x)+8= 0 2x-y+7=0・・・ ⑦ ] 点PとQが一致するとき, 点Pは直線 ①と②の交点 であるから x=-2,y=3 これは⑦を満たす。 なぜ一致するとき考える 上から, 求める直線の方程式は 2x-y+7=0 線分 PQ の中点の座標 (2/4) 上の2式の辺々を加え ると 2s=2-2y 辺々を引くと -21=2x-2 ← s, tを消去する 方程式①と②を させて解く。 BACTICE 100

解決済み 回答数: 1
数学 高校生

醜くてすみません、数1二次関数です、どなたかよろしくお願いします🙇

14:34 1月25日 (土) 2次関数 educational-expert.com 86% f(x)=x²-2x-4 がある. (1) f(x) <0 を満たすxの範囲を求めよ. 1-554141455 (2)放物線y=f(x)を原点に関して対称移動し、放物線y=g(x) とする. (i) g(x)を求めよ。 yニー(a+1)+5 (i)(x) <0g(x)>0 を同時に満たすxの範囲を求めよ. kxくけ (3)kを実数として,(2)の放物線v=oly) をy軸方向にkだけ平行移動した放物 y=h(x) とする 700√(x)>0 を同時に満たす整数がちょうど個となるよう なんの値の範囲を求めよ. or 【高校1年生】2月の河合模試 全統の学過去問 (3) 1.2.3当てますか? N(3)方針はかかるの (公園の敷地内の図) の敷地内の池のほとりに、右の図のよ うに三角形の憩いのエリア (三角PABのお よし内部)と2つの正方形の花壇(正方形 PACD PBEFの周および内部) を作る計画がある. 池 憩いの 点A, B, H, K の位置は決まっており HKF4m, 2 m エリア AH=2m, BK=610, AH+HK, BK⊥HK でる. 点Pの位置は図の線分HK 上のどこかにとる 4 m |花壇 ことができ、2つ の部分にはあたり 万円の工事費用かか 18 こああなる (1) PH=1とする (i) 正方形 PACD の面積を求めよ. (ii) 2つの花壇にかかる工事費用の合計金額を求めよ. (2) PH=xm (0x4) とする. (i) 2つの花壇の面積の和をx を用いて表せ. B Arth 16m 花壇 +5千k この範囲や (ii)2つの花壇にかかる工事費用の合計金額を最小にするxの値と, そのときの工事費用の合計金額を求めよ. ですが解けません 教えて欲しい です 4 m かからない (3) さらに, 憩いのエリアには1m² あたり1万円の工事費用がかかるとすると, 2 と憩いのエリアにかかる工事費用の合計金額を最小にするには点Pの位置をどこにとれ ばよいか. また, そのときの工事費用の合計金額を求めよ. 【高校1年生】 2月の河合模試 全統の数学過去問 (4) です。 三角形 ABC があり、 を満たしている. AB=3, AC=2, COS ∠BAC=- (1) 辺BC の長さを求めよ. (2)(i) 三角形ABCの外接円の半径R を求めよ. (ii) 三角形 ABCの面積を求めよ. (3) 平面 ABC上にない点Pを, PA=PB=PC を満たすように空間内にとる. また, 点Pから平面 ABCに下ろした垂線と平面 ABCの 交点をH とする. (i) 四角形 ABHC の面積を求めよ. 10 distinti P73+A Bを通る面を考える この映画の半径が、 70

解決済み 回答数: 1