学年

質問の種類

数学 高校生

(2)がわかりません 解説お願いします🙇‍♀️

362 重要 例 19 塗り分けの問題 (2) 立方体の各面に、隣り合った面の色は異なるように,色を 方体を回転させて一致する塗り方は同じとみなす。 (1) 異なる6色をすべて使って塗る方法は何通りあるか。 (2) 異なる5色をすべて使って塗る方法は何通りあるか。 ただし、立 基本 17 重要 31 指針 「回転させて一致するものは同じ」と考えるときは, (1) 1色で固定 展開図 (上面を除く) 特定のものを固定して、他のものの配列を考える (1) 上面に1つの色を固定し, 残り 5面の塗り方 を考える。 まず下面に塗る色を決めると, 側面 の塗り方は円順列を利用して求められる。 (2) 5色の場合、同じ色の面が2つある。 その色で 上面と下面を塗る。 そして, 側面の塗り方を考 えるが,上面と下面は同色であるから,下の解答 のようにじゅず順列を利用することになる。 下面 異なる色 側面は円順列 (2) 同色で固定 CHART 回転体の面の塗り分け 1つの面を固定し円順列 かじゅず順列 (1)ある面を1つの色で塗り,それを上面に固定 検討 解答 する。 このとき、下面の色は残りの色で塗るから 5通り そのおのおのについて, 側面の塗り方は、異なる 4個の円順列で よって (4-1)!=3!=6(通り)人と干 5×6=30 (通り) るから (1) 次の2つの塗り方は,例え 左の塗り方の上下をひっくり すと, 右の塗り方と一致する このような一致を防ぐため、 面に1色を固定している。 5 6 (E)ASE-1 () (2)2つの面は同じ色を塗ることになり,その色の 選び方は 通り その色で上面と下面を塗ると,そのおのおのに ついて, 側面の塗り方には,上下をひっくり返す と,塗り方が一致する場合が含まれている。 (*) ゆえに、異なる4個のじゅず順列で って (4-1)!=3=3(通り) 2 2 5×3=15 (通り) に関し,例えば, つの塗り方(側面の色の が、時計回り、反時計回 いのみで同じもの) は、 ひっくり返すと一致する

解決済み 回答数: 1
数学 高校生

数学「順列」の問題です (3)に関しての質問です 写真は上が問題で下が模範解答と解説です ★を書いている次の行からが分かりません なぜ、裏返しても一致しないものは120通りなのに最後の式で2で割るのでしょうか どなたか解説よろしくお願いします

|赤玉5個, 白玉4個、黒玉1個の合計 10個の玉を用意する。 通りある。 (1)10個の玉を1列に並べるとき, その方法は (2) 10個の玉を机の上で円形に並べるとき,その方法は (3) 10個の玉にひもを通してネックレスを作るとき, 通りある。 種類のネックレスができ る。 ただし, ネックレスを裏返して一致するものは、 同じものとみなす。 (1) 赤玉5個, 白玉4個, 黒玉1個の合計10個の玉を1列に並べる方法は 10! = 1260 (通り) 5!4!1! (2) 黒玉1個を固定して, 残り9個の玉を並べると考えて 9! =126(通り) 5!4! (3)(2)の126通りのうち, 裏返すともとの円順列に一致するも のは,黒玉の向かい側に赤玉があり, その2つを通る直線を 軸として, 残りの赤玉4個, 白玉4個が対称に並ぶような円 順列である。 すなわち, 対称軸に関して一方の側に, 赤玉2個, 白玉2個 を並べ, もう一方の側はそれと対称となるように並べればよ 4! 2!2! いから =6(通り) 赤 また, (2) 126通りのうち, 裏返してももとの円順列に一致しないものは |126-6=120 (通り) この120通りの1つ1つに対して, 裏返すと一致するものが他に必ず1つずつある。 よって, ネックレスの種類の総数は 120 6+ = 66 (種類) 2

解決済み 回答数: 1