学年

質問の種類

数学 高校生

(1)を、それぞれの直線を平行移動させて原点を通る2直線に変えて(切片を無視するため)解いたのですが、 範囲が90°未満になる理由が分からないです(マークしてます)。 参考書通りの解法なら180°を超えたりしないのは分かるのですが、自分のやり方だと有り得るように感じてしまい... 続きを読む

基本例 1522 直線のなす角 0000O (1) 2直線、3x-2y+2=0, 3√3x+y-1=0 のなす鋭角0を求めよ。 |(2) 直線 y=2x-1との角をなす直線の傾きを求めよ。 p.241 基本事項 2 ① 2直線のなす角 まず 各直線とx軸のなす角に注目 指針 直線y=mx+nとx軸の正の向きとのなす角を0とすると m=tane (0≤0<, 0+7) (1) 2直線とx軸の正の向きとのなす角をα β とすると, n m y=mx+n n 2直線のなす鋭角0 は, α <βなら β-α または π(β-α) で表される。 ←図から判断。 0 この問題では,tanα, tan β の値から具体的な角が得られないので, tan (B-α)の計 算に 加法定理 を利用する。 解答 (1)2直線の方程式を変形すると 13 y=-33x+1 4y y= -x+1, y=-3√3x+1 2 図のように, 2直線とx軸の正 の向きとのなす角を,それぞれ α, β とすると, 求める鋭角 0 は tanα 2 0-B-a tan B=-3√√3 T tan0=tan(β-α)=- tan β-tana 1+tan βtana 8 a 0 x =x+1 01 800 1 -(-3√3-3)=(1+(-3√3)=√3 2 2 0<< であるから 0 (2)直線 y=2x-1とx軸の正の向 y y=2x きとのなす角をα とすると /y=2x-1 tang=2 tana±tan- tan(a±)= 2±1 1Ftantan- 4 π 4 0 4 1 4 1+2・1 (複号同順) であるから x 単に2直線のなす角を るだけであれば, p.241 本事項 2 の公式利用が い。 傾きが m1, m2の2 のなす鋭角を0とする m-m2 tan 0= 1+mm2 別解 2直線は垂直でないか tan 0 √3 2 --(-3√3 1+2 (-3v 2 7√3 7 ÷ -=√√√3 2 2 00から0= 2直線のなす角は それと平行で原 2直線のなす角に そこで,直線y= を平行移動した y=2xをもとに

解決済み 回答数: 1
数学 高校生

(2)の問題についてです!青い線のところでなんで項数がkになるんですか?k-1じゃないんですか?

442 基本 例題 次の数列の初項から第n項までの和を求めよ。 20 一般項を求めて和の公式利用 00000 (2)1, 12, 1+2+22 ...... (1)12,32,52, 基本 1 19 32 指針 次の手順で求める。 ① まず 一般項を求める→ 2Σ (第に項)を計算。 Σk, k, Σk の公式や、場合によっては等比数列の和の k=1 公式を利用。 注意で,一般項を第n項としないで第k項としたのは,文字n が項数を表して →第k項をkの式で表す。 いるからである。 (2) ax=1+2+2+... +2k-1 ←等比数列の和 等比数列の和の公式を利用してak をkで表す。 CHART Σの計算 まず一般項 (第ん項) をんの式で表す 解答 (1) a 与えられた数列の第k項をα とし,求める和を Sn とする。 (2k-1)2 0 k=1 n k=1 k=1 n n よってSn=2ax=2(2k-1)=2(4k-4k+1)える ◆第ん項で一般項を考え る。 JJ k=1 k=1 =4k²-4k+Σ1 k=1 -/13n{2(n+1)(2n+1)-6(n+1)+3} = (DX=(1+r) ◆1nでくくりの中 に分数が出てこないよう 11/13n(n-1)=1/13n(n+1)(2n-1)バーにする。 1/12(4-1)=1/13n(n+1) (n-1)(s) #30 (1) (*) (2) ak=1+2+2²+......+2k-1 = 1• (2-1) = 2k_st 143 n 2-1 Sn2=(2-1)=22-21 ak は初項1,公比2 数の等比数列の和。 よって k=1 k=1 k=1 k=1 参考 S, = (22~)と 2(2n-1) -n=2"+1-n-2 表すこともできる。 2-1 注意 和が求められたら, n=1,2,3として検算 するように心掛けるとよい。 例えば,(1)では,(*)において, n=1とすると1で これは 12 に等しく OK。 (*)において n=2とすると10で, 12+32=10 から OK。 4150 結羽 創 (

解決済み 回答数: 1