学年

質問の種類

数学 高校生

数学🅰️ 赤線部分がなぜそうなるのか分かりません

130 第7章 整数の性質 重要 例題 29 ユークリッドの互除法と1次不定方程式 (1) 不定方程式 161x+19y=1を満たす整数x,yの組の中で, xの絶対値が 小のものはx=[アイ, y=ウエである。(一 (2) 不定方程式 161x+19y=5 を満たす整数x,yの組の中で,xの絶対値が最 小のものはx=オ, y=カキク である。 POINT! 1次不定方程式の整数解の1組が容易に見つからない場合は、 ユークリッドの互除法を用いる。 ( 51 参考) (2)(1) の等式の両辺を5倍すると 161(5x)+19(5y)=5 よって,(1) で見つけた整数解の1組をそれぞれ5倍したものは 161x+19y=5の整数解の1組である。 解答 (1) 161x+19y=1 161=19・8+9 (19=9•2+1 この計算を逆にたどると 1=19-9・2 ①とする。 移項すると 9161-19.8 移項すると1=19-9・2 ...... (01-) (ĉ— 8-) (ar =19-(161-198) ・2 =161(-2)+19・17_ したがって 161・(-2)+19・17=1 ① ② から 161(x+2)+19(y-17)=0 161 19 は互いに素であるから、③より (2) x+2=19k, y-17-161k(kは整数) よって x=19k-2, y=-161k+17 |x|が最小となるのはん=0のときであるから x=アイー 2,y=ウェ17 (2) 161x+19y=5 ④とする。 ②から 161・(−2・5)+19・(17・5)=5 ④ ⑤ から 161(x+10)+19(y-85)=0 161 19 は互いに素であるから,⑥より (5) x+10=19l, y-85-161Z(Zは整数) よって x=19-10, y=-161+85 |x|が最小となるのはl=1のときであるから x=オ9, y=カキクー76 201 0 ←xの係数 161 とyの係数 19 にユークリッドの互除 法の計算を行う。 余りが1になったところ で, 計算を逆にたどる。 ← ① を満たす 1組の解 x=-2, y=17 が得られる。 ②×5 とすると④を満た す1組の解x=-10, y = 85 が得られる。 参考 x,yの係数の値が大きいときは,係数を小さくする方法が

未解決 回答数: 1
数学 高校生

整数解を求める方法でこの三つの方法があると思うんですが、どの場合どれを使ったらいいのか見分ける方法はありますか?

460 第8章 整数の性質 例題 253 方程式の整数解 (1) 次の不定方程式の整数解を求めよ. (1) 2x-3y=21 [考え方 解答 Focus (②) 2x-38-212550305210形という関係があるに素であることを利用す。 (2) xとyの係数, 539=52×10+19 という関係がある。 (1) 2x-3y=21 より, 2x=3(y+7) ......① 2と3は互いに素であるから, xは3の倍数とな る. 撥数でかいの できたら、ユークリットやる したがって, kを整数として, x=3k とおける . これを①に代入すると, 2×3k=3(y+7) 2k=y+7 より y=2k-7 よって, 求める整数解は, (2) 52x+539y=19 x=3k, y=2k-7 (kは整数) (別解) 2x-3y=21 より, y=²x-71071081/ete yは整数より, xは3の倍数となる. したがって, x=3k (kは整数) とおけ, y=2k-7 よって, (2) 539-52x10+19 x=3k, y=2k-7 (kは整数) bibe これを与えられた方程式に代入すると, 52x+(52×10+19)y=19 NJIMACARO 倍数となり, んを整数として 整理すると 52(x+10y)=19(1-y) ...... ① 5219は互いに素であるから, x+10yは19の x+10y=19k, すなわち, x=19k-10y これを①に代入すると, 52×19k=19(1-y) 52k=1-yより y=-52k+1 よって, 求める整数解は, x=539k-10,y=-52k+1 (kは整数) 三習 次の不定方程式の整数解を求めよ. 253 (1) 2x-5y-25 * (税込) 2000 (2) 48x+491 ** 不定方程式 ax+by=c (aとbは互いに素) で, aまたはbとcが1より大きい公約数をもつとき, (xの式)=g(yの式) (pとgは互いに素) と変形する xが3の倍数でないとき yは整数にならない. 77 xとyの係数の大きい方 の数 539 を小さい方の数 52で割る. y=-52k+1 より, x=19k-10y =19k-10(-52k+1) =539k-10 181 74-10

回答募集中 回答数: 0
数学 高校生

244番の問題では、xの値を求めてから,、それを代入して、yの値を求めたのに、245番の問題では、なぜいきなりkを整数としておくことができるのですか?

考え方 Check] 例題 244 方程式の整数解 (3) 不定方程式 7x 17y=1 の整数解を求めよ. 不定方程式の一般解を求めるには, 1組の簡単な解 (特殊解) を見つけてそこ から求める. 特殊解の見つけ方は, (1) 実際に値を代入していき方程式を満たすx,yを探す (2) ユークリッドの互除法を用いて, 方程式を満たすx,yを探す。 などがある. それぞれ次のように考える. (1) 7x-17y=1 の係数に着目すると, 7より17の方が大きいので、 y=1,2,3…. を代入していき、xの値を探す。 y=1 を代入すると, 7x=17+1=18 番 これを満たす整数xはない。 y=2 を代入すると, 7x=34+1=35 - より, x=5Lの 以上より,特殊解 (x,y)=(5,2) 21. (2) 7x-17y=1の係数に着目して, ユークリッドの互除法を用いる。 17=7×2+3 ・・・① 7=3×2+1 ② より 17-3×2 ….. ③ ①より, 3=17-7×2 として, ** これを③に代入すると, 1=7-(17-7×2)×2 1=7-17×2+7×4 1=7×5-17×2 したがって, 7×5-17×2=1 り 特殊解 (x,y)=(5,2) また、特殊解は求め方により、 いくつも存在するから, 求める一般解の表し方は、求め方により、 異なる場合 もある. 717 は互いに素な で 最後に最大公約 数1が現れる. CH» à  à ³6 1905 zusados 11 さらに,与えられた不定方程式を1つの文字について 解き,x,yが整数であることを利用して求めることもする できる.(次ページの注を参照 ) そのような上に、メージ stafia Sstml 解 Flocus 練習 244 7x-17y=1の解の1つは(x,y)=(52) である. これを不定方程式に代入して、 7×5-17×2=1 ......① 7x-17y=1 _7(x-5)-17(y-2)=0 て 7(x-5)=17(y-2 ...... ③ ここで, 7 17 は互いに素であるから, x-5は17の倍数 となり x-517n (nは整数) とおける これを③に代入すると, 7・17n=17(y-2) 7n=y-2 ②-① より よって, 求める一般解は, x=17n+5,y=7n+2 (nは整数) より, y=7n+2 ここで, 7 7 17(y-2) 7 これを①に代入して, x=5+ 不定方程式の整数解を求める際には,まず特殊解を見つける 注例題244の一般解は, x=17n+5, y=7n+2 であったが x=17n-12,y=7n-5 などと表してもよい。 となる. 注 次のように求める方法もある. (1つの文字について解いて, x,yが整数であることを利用する) 17y+1 7x-17y=1 をxについて整理すると, X=- 17y+1_17(y-2)+35 2 ユークリッドの互除法 =5+ 17(y-2) 7 次の不定方程式の整数解を求めよ. (1) 2x+11y=5 特殊解 (x,y)=(52) を利用する. ......② (見つけ方は考え方を 参照) y-2は7の倍数 17(y-2) x, 5は整数より、 7 も整数で,717 は互いに素であるから, Jy-2は7の倍数、すなわち, y-2=7n (nは整数) とおける. これを②に代入して、x=17n+5 より 求める一般解は, x=17n+5,y=7n+2 (nは整数) (2) 4x+3y=1 431 8 整数の性質

回答募集中 回答数: 0