学年

質問の種類

数学 高校生

微分についての質問です。一枚目の写真で青マーカーを引いたところには、「三次不等式はグラフを利用して求める。極値を求める必要はない。」とありますが、例題212.213では極値を出して解いている気がします。 ・なぜ例題212.213では極値を出して、例題216では極値を出して... 続きを読む

2 406 第6章 微分法改 練習 [216] **** 7956 く 50 785 2210 196 例題 216 三角不等式 **** cos 30 + cos 20+ cos >0 を満たす0の値の範囲を求めよ.ただし, 0≦02 考え方 解答 とする. 例題 212(p.402) と同様にして3次関数のグラフとx軸の位置関係を考える. まず cosa=t とおき,tの3次不等式を作る cost とおくと,002πより、 また, cos30=4cos0-3cos0=4t-3t cos 20=2 cos 0-1=2t2-1 4t3+2t-2t-1>0 したがって, 与式は, (4t-3t) + (2-1) +t>0 2t2(2t+1)-(2t+1)>0 (2t+1)(2-1)>0 ...... ② (2t+1)(2-1)= 0 とすると, tの値の範囲に注意 与式の左辺を cosで 統一する。そのとき 倍角,2倍角の公式を 利用する. ((p.269 参照) 組み合わせを考えて, 因数分解する。 [解] Commen ここ こで, 2 線が一致 200 とし, 線をも この √2 1 1 t=- 0 2' √2 2 y=4t+2t-2t-1 のグラフは, 右の図のようになる. したがって、②の解は、 ①より RD 3次不等式はグラフを 利用して考える. 極値 を求める必要はない。 30 1 <t≦1 √2 2√2 よって,t=cos 0,0≦02 より 0≤0< 単位円を利用して8の 範囲を求める. て π 第3,4象限の解と第2, 2 3 147 4 1 √2- 1象限の解は,それぞ 例 0 5 << 27 << れx軸に関して対称 10 1 x 43 7 3π 1 4π 注〉和積の公式を用いて次のように解くこともできる. (p.274 参照) ( cos30 + cos 0) + cos20>0 2 cos 20 cos 0+ cos 20>0 cos 20 (2 cos 0+1)>0 (2cos'0-1)(2cos0+1)>0 ここで, cosa=t とおくと, cosA+ cosB=2cos- A+B A-B COS 2 2 (2t2-1)(2t+1)>0 あとは、例題216と同様にして解けばよい. tan 20 + tan00 を満たす 0 の値の範囲を求めよ。ただし,0≦02 とする. 次

回答募集中 回答数: 0
数学 高校生

三角関数の問題です。 赤く囲んだところが分かりません。 よろしくお願いします。

63 図形の計量と加法定理の利用 三角形ABCにおいて, AC=3, ∠B=z, <C=8-7 とする。ただし, 0 は cos0=- << を満たす角とする。 (1) sin= であり, 8についての不等式が成り立つ。 ウの解答群 © <<* ① ②くく ③ << (2) sin ∠C= であり、AB=キ+√ク] である。 [ (3)辺BC上に, BAD 120 となるように点D をとることができる。このとき、 ケコ + サ AD= である。ただし、コシ とする。 各 (1)<6πより, sin0 0 であるから sin 0 = √1-cos² = √1-(-3)=√ 0 √2 sin-sin-sin = 2 1 2 2 24 sin= ....... ① 6 = sin-27- ...... ② 6 ① ④ 3 √18 sin -π= ..... ③ 6 -1 10 sin1 = ......④ <Point 大小関係は②>①>③>であるから / <<1/2(①) (2) 加法定理により sin ∠C = sin 0- sin(0-3) sincosmo-cos sin / B /6 = △ABCにおいて, 正弦定理により AB AC in (0-1) AB sinc 3 3+√6 6 2 3+√6 AB = 6• O <-114- 2 J2 こう解く! LLA STEP 不等式から問題解決のための 1 構想を立てよう ①~③で与えられている角を 正弦の値に置き換えて比較す る。 STEP 図をかいて、適切な定理を用 ②いよう 与えられた条件を図で表すと, 向かい合う辺と角が2組ある ことに気づくだろう。 このよう なときは, 正弦定理を用いる とよい。 A 分母を6にそろえて比較する。 B 加法定理 sin (a-B) =sinacos β-cosasinβ C 角度の情報が多い三角形に対し ては、 正弦定理を用いるのが有 効である。 9+3x

回答募集中 回答数: 0
数学 高校生

この問題のコで、3ページのような式はどこから求めるのでしょうか、、? 5を並行移動したのが4というのは書いてあるので分かるのですが、急にこの式が出てきてわからないです。。 解説お願いします

第4問~第7問は,いずれか3問を選択し, 解答しなさい。 ここで, オ 第7問 (選択問題)(配点 16) 焦点の座標 (p, 0), のときの楕円は,長軸の長さ 短軸の長さ H コ [1] 太郎さんと花子さんは, 2次曲線の性質について話している。 2人の会話文を 0である。 また, に シ のときの双曲線の漸近線は, 直線 y=± だけ平行移動したものである。 サ xをx軸方向 イ エ の解答群 (同じものを繰り返し選んでもよい。 ) 読んで,下の問いに答えよ。 太郎:楕円は、2定点F,F′からの距離の和が一定である点Pの軌跡だよね 花子: 2定点からの距離の差が一定なら双曲線になるよね。 太郎:放物線は、定点Fと,Fを通らない定直線からの 距離が等しい点の軌跡だよね。 花子: 楕円や双曲線の定義と放物線の定義は設定が違うね。 太郎: 定点FとFを通らない定直線からの距離の比が一 定という設定にした場合どうなるか調べてみよう。 (1) F(c, 0), F'(-c, 0) のとき, 2定点F, F' からの距離の和が2aである楕円の 方程式は ・ 62 =1 ただし,62 ア の解答群 a²+c² a²-c² ②√a²+c² (2) 太郎さんと花子さんは定点と定直線からの距離の比が一定という設定にした場 合どうなるかを調べることにした。 すると,そのような設定の場合も2次曲線に なり,比によって, 2次曲線の形が決まることが分かった。 p>0, r0 とする。 点 F (p, 0) からの距離とy軸からの距離の比が1で ある点P(x, y) の軌跡の方程式を求めると、 x+ye- =0 となるから オ のとき、楕円を表し、 カ のとき, 放物線を表し、 キのとき,双曲線を表す。 (数学Ⅱ・数学Bの第7問は次ページに続く。) Þ ① 2p ② p² ③ 2p² ④ (1+m²) ⑤ (1-2) 6 (1-r) 22-1 ⑦ オ キ の解答群(同じものを繰り返し選んでもよい。 ) r>1 ① 0 <r<1 (2) r=1 ク コ の解答群 (同じものを繰り返し選んでもよい。) 2pr 2pr (0 2pr 2pr 1-2 1+2 √1+2 √1-22 (1+m2) p(1-r²) p(1+m²) p(1-r²) 1-2 1+2 ⑥ √1-22 √1+22 サ シ の解答群(同じものを繰り返し選んでもよい。) +1 ② Þ 1-2 1+re (数学Ⅱ・数学B・数学C第7問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

なぜ、直線Mにおいての任意の複素数をZと表すことができるんですか??直線Lの方でもZが使われてて違うものなのになぜ同じ文字でおけるのか教えて欲しいです!!

B(β) z-a z-a よって, 7-B Y-B. Think 例題 C2.36 垂線の方程式,垂心 **** 複素数平面において, 単位円周上に異なる3点A(a),B(β),C(y) を 定める. ことを証 (1) 点Aから直線 BC に垂線lを引くとき, この垂線ℓ上の任意の点 D1S P(z)について、z-a=By (2-2) が成り立つことを証明せよ。 (2) △ABCの垂心を α, β, y で表せ. 考え方 (1) 点A(a),B(3), C(y), P(z) について,|a|=|β|=|y|=1 解答 APLBC または z=a z-a (山形大改) (2) 点Bから直線CAに垂線を引くとき,この垂線上の任意の点Q (ω) について (1) 1-1が純虚数または01-8=-1 と同様の式が成り立つ垂心は z=w となる複素数である. (1) Pは垂線上の点なので, AP⊥BC または z=α より z-a -は純虚数または 0 Y-B (A(α)→0(0) とな [B(B) → 0(0) るように平行移動す Pzると,P,Cは、それ A(α)ぞれ [P(z)→P (z-a) IC(y)→C^(-3) YA P 1. 0 -1 1 上にある であるから, C(r)-1=0 に移る. z-a z-a A 7-B Y-B 両辺に y-βを掛けて, P'(z-a) z-α=-(y-β) (28) Ala ・① ここで, 3点A(a),B(β), C(y) は単位円周上の点よ り |a|=|β|=|y|=1 C'(r-B) よって, zキαのと したがって,|a|=||=|y|=1 であるから, OP OC を aa=βB=yy=1より, 0のまわりに今だ a= B= y= .....2 a B' A (0-8)=0 け回転して実数倍 したベクトルより ②①に代入すると, Z z-a=-(y-β) =BY (1) 1 1α18 8 2- a a =(β-y)- B-Y B BY よって 00: Z ・③ となり、題意は示された「円 z-a=k cos a=k(cos +isin(7-8) RY=ki(7-8) は0でない実数) よって zaki (純虚数 または0) CES ③は直線lの方程式 (1+1を複素数で表現した 2

回答募集中 回答数: 0
数学 高校生

数IIの三角関数です。 (1)から、途中式なども含めた詳しい解説お願いしたいです… よろしくお願いします🙇🏻‍♀️

0... (*) を考える。 cos >0 を ウ πである。 実戦問題 73 三角関数を含む方程式・不等式 0002を満たす定数とし,xの2次方程式 x2+2(1-cosd)x + 3-sin'0-2sin20-2sin (1) 方程式 (*) が異なる2つの実数解 α, β をもつとき, 0は不等式 2sin20+ ア sine π オ キ 満たす。このことから, 0 の値の範囲を求めると, <B< π. <日< I ク ケ コ さらに6が鋭角のとき, 方程式 (*)のx= sin0 以外の解はx= (2) x=sin が方程式 (*) の解となるような角0は全部でサ 個ある。 [シス + v セ である。 答 (1)xの2次方程式 f(x) = 0 が異なる2つの実数解をもつとき,判別 式をDとすると D> 0 = =(1-cosl)-(3-sin'0-2sin20-2sin0) =2sin20+2sin-2cos0+ (sin'0+cos20)-2 = 2sin20+ 2sin0-2cos0-1 =4sincos0+ 2sin02cos0-1= (2sin0-1) (2cos+1) (2sin-1)(2cos8+1)>0 0≦02πの範囲に注意して (i) sind> かつ cost-1/2 のとき 2 Key 1 sin0 > 12 より cose > 1/23より 0≤0<,<<2 よって,この共通部分は << (ii) sine< 12 1 かつ cose<! のとき 2 Key sin<1 058< >*<0<2x π 5 6'6 2 cos<- より <日< π 2 4 3 118 sin20=2sin Acoso AB> 0⇔ A>O {A<0 または [B>0 \B<0 1 sin0 > cos>- <2π sin< よって、この共通部分は8/1/20 (i), (ii) より << 6 2 3 5 π、 << 6 (2) x = sinが方程式 (*) の解であるとき sin20+2(1-cos) sin0+3-sin20-2sin20-2sinQ= 0 整理すると, 3(sin20-1)=0より sin20=1 12 1-2 y cose<- 1x 0 x 20 の値のとり得る範囲に注意 0204πの範囲で 20= 5 π 2' 2 よって、条件を満たす 0 は 0 = π 5 4'4 する。 の2個。 方程式 (*) は さらにが鋭角のとき,=1/4であるから 4 x²+(2-√/2)x+1/2(1-2√2) = 0 左辺を因数分解して = 0 方程式(*)はx=sin = 1/12 T 1 π 1 -4+/2 よって, x= sin- 以外の解はx= -2= √√2 √2 2 を解にもつことがわかってい あるから,因数分解する。 攻略のカギ! Key 1 三角関数を含む方程式・不等式は, 単位円を利用せよ

回答募集中 回答数: 0