学年

質問の種類

物理 高校生

最後の問題で力学的エネルギー保存の式が0以上としているのは何故ですか?

6 いろいろな運動 軌道 地球 する。 例題 50 地球の質量を M, 半径を R, 万有引力定数をGとする。 (1)地表すれすれに円軌道を描いて飛ぶ人工衛星の速さ(これを 第1宇宙速度という) と周期 T を求めよ。 (2)地表面における重力加速度gを用いて表せ。 (3)地表面から人工衛星を打ち出し,地球から無限遠方に到達させ たい。 打ち出す速度はv (これを第2宇宙速度という)以上でな ければならない。ひ を求めよ。 遠心力 (1)人工衛星の質量を とする。 (万有引力)=(遠心力) より GmM R2 心力 V₁ m R = m- R GM . 01= R T = 21- W = 2 (n=4) GmM R2 2лR R T= 2πR V₁ GM (2)(地表面での重力)=(遠心力) Vi mg = m- . v=gR R (3)打ち出した速さを v, 無限遠方での速さをu とおく。無限遠方での万有引力による位置エネ ルギーは0だから力学的エネルギー保存則より 万引力による位置エネルギ mo mv² +(-6)= mu² -mu20 R (打ち出した瞬間) ( 無限遠方) これを解いて≧ 2GM このとき R 万有引力による。 ココが 2GM(=√2vs) . 02= R ポイント) 位置エネルギーの VA m M ME -G(RW) [人工衛星を無限遠方に到達させるための条件] (運動エネルギー) + (万有引力による位置エネルギー) -18

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

物理の万有引力に関する質問です。 問1と問2は答えを出せたのですが、問3以降が分からず困っています。 どなたか分かる方がいらっしゃれば教えていただけると幸いです。 ちなみに、問1と問2に合っているか分からないですが、次のような答えになりました。 問1 mg=GMm/R... 続きを読む

問1 図1のように地上から,質量mの衛星を打ち上げて軌道に乗せることを考 える. 以下の問1~問5に全て解答しなさい. ただし, 地球は点Oを中心とす る密度一様な球体とし、 地球の半径をR, 地球の質量をM, 万有引力定数をG とする.また, 地球の自転による効果については考慮しない. 地上での重力加速度の大きさを R, M, G を用いて表しなさい. 問2 衛星を地上より鉛直上向きに速さ V。 で打ち上げて, 地球の中心から2Rの点 Aに達した時に速さが0になった. この時の速さ Vo を求めなさい. 問3 衛星が点Aに速さ0で達した直後, OAに垂直な方向に速さ VAに加速して, 点Aから地球の中心を通る延長線上のOB=6R となる点 B に到着した. この時 の速さ VA,及び, 点Bに到着した時の速さ VB を求めなさい. 問4 衛星が点B に達した直後, 速さ VC に加速して地球に対し半径 6R の等速円運 動をさせる. その時の速さと公転周期 Tc を求めなさい . 問5 地球に対し半径 6R の等速円運動をしている衛星の運動エネルギーK を用いて, この衛星がもつ力学的エネルギーを表しなさい. ただし, 万有引力による位置エ ネルギーの基準点は無限遠とする.

解決済み 回答数: 1