学年

質問の種類

数学 高校生

(1)の数列bnの式で、なぜ(n-1)をかけるかわかりません。 (1)、(2)どちらも数列bnの式の求め方がわかりません(bn=an+1-anまではわかる)教えて欲しいです🙇🏻‍♀️

380 基本 例題 19 階差数列と一般項 次の数列{a} の一般項 αn を求めよ。 (1)8, 15, 24, 35, 48, (2) 5, 7, 11, 19, 35, CHART & SOLUTION {a} の一般項 (bn=an+1-an とする) わからなければ,階差数列 {bm} を調べる p.375 基本事項.Gha n-1 n≧2のときabk k=1 ← 初項 (n=1の場合) は特別扱い。 解答で公式を使うときは n≧2 を忘れないように。 また, n=1 ように! (1) 階差数列は 7, 9, 11, 13, 公差2の等差数列 (2)階差数列は 2, 4, 8, 16, 公比2の等比数列 解答 その場合の確認を忘れ 数列 {an} の階差数列を {bm} とする。 (1) 数列{bm} は, 7, 9, 11, 13, 公差2の等差数列である。 ・・であるから, 初項 7, 8 15 24 35 差 : 791113 ゆえに bn=7+(n-1)・2=2n+5 よって, n≧2のとき n-1 k=1 an=a1+(2k+5)=8+2k+5 5)=8+2 n-1 n-1 k=1 k=1 (+) =8+2・ 1/12(n-1)n+5(n-1)=n²+4n+3 また,初項は α = 8 であるから,上の式は n=1のとき ☆ 「n≧2 のとき」とい 条件を忘れないよう k=(n-1)- -1 k=1 2 初項(n=1の場合: 特別扱い。 にも成り立つ。 以上により, 一般項 an は an=n2+4n+3 (2) 数列{bm} は, 2, 4, 8, 16, 比2の等比数列である。 ゆえに よって, n≧2 のとき であるから, 初項 2, 公 bn=2.2"-1=2" 5 7 11 19 35 WW 差 : 2 4 8 16 ← n≧2のとき」とい n-1 an=1+2=5+ 2(21-1-1) 条件を忘れないよう -=2"+3 k=1 2-1 また,初項は α = 5 であるから,上の式は n=1のとき ←初項(n=1の場合 にも成り立つ。 以上により,一般項an は an=2"+3 特別扱い。 基 C

未解決 回答数: 1
数学 高校生

この問題についてで、写真のことが成り立つので<BCM=<BCNとしてよいでしょうか?回答よろしくお願いします。

戦略 例題 座標平面の設定 ★★☆☆ AB=ACである二等辺三角形ABC を考える。辺 AB の中点を M とし, 辺 AB を延長した直線上に点Nを, AN:NB=2:1 となるようにとる。 このとき,∠BCM = ∠BCN となることを示せ。ただし,点Nは辺 AB 上にはないものとする。 AR (京都大) « Re Action 図形の証明問題は,文字が少なくなるように座標軸を決定せよ IB 例題 95 思考プロセス ・△ABC は AB AC の二等辺三角形 YA |対称性の利用 O ADJ A 対称軸をy軸に設定 ∠BCM と ∠BCN を考える BCをx軸上に設定して、 とすると、 M B C 0 x 関問 戦略 設定 2 直線 NC と MC の傾きを考える AN 95 解 直線 BC をx軸, 辺BCの中点を 原点にとる。 △ABC は AB AC であるから, A(0, 2a),B(-26,0), C(260) (a>0, 6 > 0) としても 一般性を失わない。 YA 34A 2a (8) M A(0, 4), B(-6, 0) のよう At に設定してもよいが,後で -2b BO (2) ① Mは線分ABの中点であり, N は 線分ABを2:1 に外分する点であ NO DA るから M(-b, a), N(-4b, -2a) 26 CABの中点Mを考えると M(-) 分数になってしまうか ら,Mの座標が分数とな らないようにした。 このとき,NC の傾きは m1 = 26-(-4) 36 0+(-2a) a A = 0-a a MCの傾き m2 は m2= 26-(-b) 3b よって, 2直線 NC と MCはx軸に関して対称であるから <BCM = ∠BCN 頭を (別解〕(座標を用いない証明) BM=α とおくと AB = 24, AN = 4a, AC=2a <BAC=0 とおくと, △AMCにおいて, 余弦定理により CM² = a² + (2a)2-2. a. 2acos = 5a² - 4a² cos BA 逆向きに考える ∠BCM = ∠BCN を示す。 CM:CN = MB:BN が示されればよい。 MB:BN=1:2より, CM:CN = 1:2 を示 したい。 また,△ANC において,余弦定理により11/07 CN2 = (4a)²+(2a)2-2.4a 2acos 08 A =20α²-16acost M FO 大 よって、CM:CN=1:4 より <BCM = ∠BCN CM:CN=1:28- したがって、角の二等分線と比の定理の逆により B C ② ① 練習 △OCD の外側にOCを1辺とする正方形 OABC と, ODを1辺とする正方形 このとき、 AD ⊥ CF であることを証明せよ。 (茨城大) 303 p.315 問題1

解決済み 回答数: 1