学年

質問の種類

数学 高校生

写真の問題の(3)についてですが、 なぜ「0<a<3」(上から3行目)という式をもちいてるのですか?この式がなくても他の3つの不等式を満たすようなグラフは題意を満たすグラフになると思うのですが… (言い換えると、「0<a<3」という式は必要条件?であるから不要なのでは?とい... 続きを読む

礎問 78 第2章 2次関数 45 解の配置 2次方程式 2-2ax+4=0 が次の条件をみたすようなαの範 囲をそれぞれ定めよ. (1) 2解がともに1より大きい. △〇 (2) 1つの解が1より大きく、他の解が1より小さいAO (3) 2解がともに0と3の間にある.△△ (4) 2解が0と2の間と2と4の間に1つずつある. 精講 解の条件を使って係数の関係式を求めるときは, グラフを利用しま す. その際, グラフの次の部分に着目して解答をつくっていきます。 あるxの値に対するyの値の符号 (1) ② 軸の動きうる範囲 ③ 頂点のy座標 (または, 判別式) の符号 このように, 方程式の解を特定の範囲に押し込むことを「解の配置」といい グラフを方程式へ応用していく代表的なもので,今後,数学ⅡIBへと学習が すすんでいっても使う考え方です。 確実にマスターしてください。 解答 f(x)=x2-2ax+4 とおくと, f(x)=(x-a)2+4-² よって, 軸はx=α, 頂点は(a, 4-α²) (1) f(x)=0 の2解が1より大きいとき y=f(x)のグラフは右図のようになっている. よって,次の連立不等式が成立する. f(1)=5-2a> 0 精講① 精講 ② ◆精講③ 次ページ右上の a>1 (4-a² ≤0 a</a/かつ 1 <aかつ 「a≦-2 または2≦a」 右図の数直線より、2≦a<mam -2 (a) 01 a y=f(x) IC 4-a² 25 a

未解決 回答数: 1
数学 大学生・専門学校生・社会人

テキストには写真の(2.13)と(2.15)より(2.15)式の右辺、左辺の定数項について求められるとしていますが、求め方が分かりません。どのように考えた場合定数項について求められるかを教えてください

}) (0) で .11) xx-th-1² tr 1 n-1 (2.12) Page bi age 171 EN (T 20 君のこと Page +1)= 172 l を上昇階乗ベキと呼ぶ。 この両者をあわせて, 階乗ベキと呼ぶことにする。 2.3 スターリング数 2.2節で学習したように、 階乗ベキは差分演算のなかで有効な計算手段 である。 ここでは,スターリング (Stirling *3) 数を利用して下降階乗ベ キュ”と単項式”の関係を学習する。 ここでnは2以上の自然数とし ておく。 実際には、下降階乗ベキを多項式で表すこと, 単項式を下降階 乗ベキの一次結合で表すことを問題意識とする。 まず、前者については x² = x² +Nn-1,nxn-1 +...+₁,nx = Σnj,n x² in (2.13) j=0 と表せる。ここで,Vn,n=1,70,n=0, さらにnjin=0,j>nであり, 7j,n は漸化式 In=zn+in-1,n n - njn+1=nj-1,n nnjin, 1≤j≤n x² (x-1) {[ (x-1) (x-2) * \\ { XL-{h+1) +2) (x −(n+1)+1) (2.14) を満たす。実際,zn+1=cℓ.(x-n) であるから、この式の両辺をライ プニッツの公式 *4 を利用して回微分すると, 積の微妙で、()は2階 (xn+¹)(i) = (x²)(i). (x − n) + j(x²)(i-1)³025 (2.15) を得る。2.13) から (215) の左辺の定数項は, j! 7jn+1 であり, (2.15) の右辺の定数項は-nj! nijn+j.(j-1)! nj-1 である。 したがって、 う! で割って比較することで, (2.14) が導かれる。 また,後者については, 第2章 差分法 | 37 n xn-¹ +...+ñ₁, x² = Σnk,n x² k=0 x. ?jn+の区間の生き残り処理する? (2.16) と表せる。 ここで, in,n=1,70,n=0, さらに ik,n=0,knであ り kn は漸化式 *3 James Stirling, 1692-1770, スコットランド, スターリングによって書かれた ものに [163] などがある。 *4 1.4.2の定理 1.4を参照のこと。 > (x^²+1) = x^² + Mn₁n₁₁ X²

回答募集中 回答数: 0
理科 中学生

ここってなんでx-4.y+2にならないんですか

Think 例題 35 平行移動・対称移動 「味の環 S. 放物線y=ax²+bx+c をx軸方向に4,y 軸方向に 2だけ平行移動 した後,x軸に関して対称移動したものの方程式が, y=2x-6x-4にな った。定数a,b,cの値を求めよ。 3 y=ax²+bx+c Focus 放物線y=2x-6x-4 をどのように移動すると、もとの放物線y=ax+bx+c に なるかを考える。そのとき、移動の順序に注意する 軸に関して対称 軸方向に 軸方向に 軸方向に-4 軸方向に2 (2) を 軸に関して対称 解答 放物線y=2x²-6x-4.... ① (i) x軸に関して対称移動し, (i) x 軸方向に -4, y 軸方向に2だけ平行移動 すると,もとの放物線になる. (i) ① をx軸に関して対称移動するから, y を -y におき換えて, -y=2x²-6x-4 つまり, y=-2x²+6x+4 ...... ② 1 2次関数の ②をx軸方向に -4, y 軸方向に2だけ平行移 動するから, v-2=-2(x+4)+6(x+4)+4 y=-2x-10-2 ...... ③ つまり, よって, ③が放物線y=ax²+bx+c より, 17 a=-2, b=-10, c= -2 **** (1) y=2x²-6x-4 y=ax²+bx+c y=2x²-6x-4 の逆の移動を考える. x軸方向 4,y軸方向-2」 の逆の移動は 「x軸方向-4, y 軸方向2」 であり,「x軸に関して対称」 の逆の移動は「x軸に関し 対称」である. 標準形にして、頂点の移動 で考えてもよい。 逆の移動は順序が重要 U 注〉 例題 35 のように、 いくつかの移動を行うときは,その順序 を間違えると全く違う放物線になってしまう場合がある たとえば,上の解答で, 放物線 y=2x²-6x-4 を(i)(i)の 順で移動した放物線は, y=-2x2-10x-6. となってしまう. つまり、いくつかの移動を行うときは, そ の順序が大切である. xをx+4, y をy-2 にお き換える. 係数を比較するとなる 3 ((1) YA (ii) (ii) 第2章 (2) (i) x 放物線y=ax2+bx+c をy軸に関して対称移動した後,x軸方向に4,y軸方 ++ BL. 5向に-3だけ平行移動したものの方程式が, y=-x^+3x4にな

未解決 回答数: 1