学年

質問の種類

数学 高校生

問い2、3がわからないため、教えていただいきたいです。問1の答えは6<k<3分の22になりました。

令和4年度 数学Ⅰ このパフォーマンス課題は以下のルーブリックに従って評価します。 ①~③は問題番号に対応しています。 A B 0 3つの条件をして解き の値の範囲を求めることが できた。 3つの条件を立式することが (2) 整数kを代入した2次方程式 必要な条件を立式して解き、 解き 根拠とともに正しく結論を 解が4より大きいことを示導くことができた。 すことができた。 整数kを代入した2次方程式 必要な条件を立式すること を解くことができた。 ができた。 できた。 3つの条件を立式しようとし 整数を代入した2次方程式 必要な条件を立式しようと を解こうとした。 した。 A: 2次方程式を解きすぎて極めてしまったなあ。 B : それじゃあ2次方程式の解を一緒に配置してみようよ。 A:へえ, 面白そう!!!! どうやるの? B : 例えば、次のような問題を考えたよね。 (教科書p116類題) ②次方程式x2mx+m+6=0が0より大きい異なる2つの解をもつような 定数の値の範囲を求めよ。 (解説) f(x)=x²-2x+m+6とすると 2次方程式f(x)=0が0より大きい異なる2つの解をもつ ための条件は,放物線y=f(x)がx軸の正の部分と, 異なる2点で交わることである。 これは,次の [1]~[3] が同時に成り立つことと同値で ある。 f(x)=(x-m)²-m²+m+6 [1] x軸と異なる2点で交わる [2] 軸がx>0 の部分にある [3] y軸 (直線x=0) との交点のy座標が正 すなわち [1] f(x)=0 の判別式をDとすると D -=(-m)²-(m+6)=m²-m-6>0 m+6 712 -6 x=m これを解いて <-2,3<m ...... ① [2] 放物線y=f(x) の軸は直線x=mで, この軸について m > 0 ...... ② [3] f(0) > 0 から m+6>0 よって m> -6 ③ ①, ②, ③ の共通範囲を求めて m>3 A: そういえばこんな問題あったね。 B : この考えを活用して、 次の問題を考えてみよう。 A:さっきの[1]~[3] の条件はどう変わるかな? 11 2次方程式x^2kx+5k+6=0…☆ が4より大きい異なる2つの解をもつような 定数kの値の範囲を求めよ。 -20 3 V [A[2]と[3]が少し難しかったけれど,何とかの値の範囲を求めることができたよ。 B: さすがだね。 でも, 本当にkの値がこの範囲にあるとき 2次方程式☆は 4より大きい異なる2つの解を持つのかな? A : 実験してみよう! B: 唐突だけれど, √2 = 1.4142・・・ だから, V2 < 1.5 だよね。 2上で求めたの値の範囲を満たす整数kを, 2次方程式に代入して解け。 また, その解が4より大きいことを示せ。 m A : √ が出てきて少し困ったけど、確かに2つの解は4より大きいね。 B : 本当だったね。 同様に考えれば, あらゆる数について, より大きい異なる2つの解をもつような定数kの値の範囲を求められるのかな? A 6で実験してみよう! 3 2次方程式x2-2kx+5k+6=0…..☆ が6より大きい異なる2つの解をもつ場合はあるか。 | ある場合もない場合も理由を述べよ。 AB: へえ,こうなるんだ!

回答募集中 回答数: 0
数学 高校生

すみません。 フォーカスゴールドの例題92の二次関数の解の存在範囲を詳しく解説お願いします。

164 第2章 2次関数 Check 例題 92 解の存在範囲(1) 考え方 このような2次方程式の解の存在範囲を求めるときは,まず, y=f(x)=x2-2ax+3a ocus 解答 y=f(x)=x2-2ax+3a とおくと, f(x)=x²-2ax+3a とおいて考える. 2次方程式 f(x)=0 の実数解は, 2次関数 y=f(x) のグラフとx軸との共有点のx座標である. このこ とに着目して, 「異なる2つの実数解が, ともに2よ り大きくなる」場合のグラフはどうなるかを考える. 2次方程式x2-2ax+3a=0の異なる2つの実数解が, ともに2より 大きくなるような定数αの値の範囲を求めよ. (東京工科大・改) =(x-a)^-a²+3a より, y=f(x)のグラフは,下に凸の放物線で, 軸が直線x=α, 頂点が点 (a, -a²+3a) となる. f(x)=0 の異なる2つの実数解 がともに2より大きくなるのは, m y=f(x)のグラフが右の図のように なるときである. よって, 求める条件は, (i) ( 頂点のy座標) <0 (Ⅱ) 軸が直線 x=2より右側 (iii) ƒ(2) >0 である. (i) -a²+3a<0 as-7,1sa. a²-3a>0 a(a-3)>0 a<0, 3<a ….…..① (ii) a>2 (iii) f(2)=4-4a+3a>0 り a<4 よって, ①〜③ より 3<a<4 0 (2,f(2)) |x=2|x=a 2 a (1) 2 3 (3) 4 D30 x di D20 (2, ƒ(2)) 1|x=2|x=a *** 2 a y=f(x) を平方完成 する. +++b x 頂点, 軸, f(2) の値 に着目する. (i)は, 判別式 D> より D =(-a)²-3a =a²-3a>0 としてもよい。 a DE POUS 数直線上で共通部 を確かめる.

未解決 回答数: 1