学年

質問の種類

数学 高校生

ゆえにからの2行、なぜこうなるか分かりません 教えて欲しいです

278 重要 例題 163 定積分で表された関数の最大・最小 (3) 00000 実数が1ste の範囲を動くとき, S(t)=Sole-tax の最大値と最小値を めよ。 ② 1 絶対値 場合に分ける 指針 場合分けの境目は ex-t = 0 の解で x=logt ここで, 条件1≦t≦e より 0≦log t≦1 であるから, 10gtは積 区間 0≦x≦1の内部にある。 よって、積分区間 0≦x≦1 を 0≦x≦logt と logt≦x≦1 に分割して定積分 Solex-t/dx を計算する。 YA e-t t-1 ●基本 147, 161 y=lex-t\/ logt ② ③ ex-t=0 とすると x=logt 解答 1≦te であるから mi2x7x12 0≤logt≤1 ゆえに 0≦x≦logtのとき ■logt は単調増加。 lex-tl=-(ex-t log≦x≦1のとき lex-tl=ex-t logt よって S(t)=S-(ex-t)}dx+S( (ex-t)dx= =-[ex-tx]+[ex-tx] Jlogt 0 =-2(elogt- logt-tlogt) +1+e-t Jlogt =-2t+2tlogt+1+e-t =2tlogt-3t+e+1 ゆえに S'(t) = 210gt+2t•• -3=2logt-1 t -A (A≤0) A (A≥0) 積分変数はxであるか ら, tは定数として扱う。 [F(x)]+[F(x) =-2F(c)+F(a)+F(b) elogt=t 微分法を利用して最大 値・最小値を求める。 S(t) [↑] S'(t) = 0 とすると logt= e-2 最大 1F 最小 e e 0 1 √e et e-2√e+1 よって t=e=√e 1≦t≦e における S(t) t 1 ... √e の増減表は右のように S'(t) - 0 + なる。 > 1 ここで e-2<1, S(t) e-2 極小 S√e)=2√e log√e−3√e+e+1 =e-2√e +1 したがって, S(t) は t=eのとき最大値 1, le = 2.718... log√e= t=√e のとき最小値 e-2√e +1 をとる。 (

解決済み 回答数: 1
数学 高校生

(3)が分かりません。 どういう発想でtをこのように置いたのか。 t→+0はどうして?

148 第5章 微分法 基礎問 81 微分法の不等式への応用 > (1)x>0 のとき,f/12+x+1 が成りたつことを示せ. (2)lim=0を示せ. (3) limrlogz=0 を示せ. +0 y=er 上の点(0, 1) における接線を 求めると, y=x+1 になります。 こ のとき,右図より y=e² が y=x+1 149 y=ez y=x+1 より上側にあります. だから, x>0では x+1,すなわち, f'(x)>0であることが わかります. -1 10 T (2)>0のとき,(1)より > 付して. r2+x+1> 2 2 IC 精講 (1) 微分法の不等式への応用はⅡB ベク 97 みです. 考え方自体は何ら変わりはありません。 ⅡB ベク 98 で学習済 ∞ lim 20 だから、はさみうちの原理より I lim=0 (2)は78に,(3)は演習問題 79 にでています。 注 解答では,x+1を切り捨てていますが, そのままだと次のように 大学入試で,これらが必要になるときは, Ⅰ. 直接与えてある (78) II. 間接的に与えてある (演習問題 79) Ⅲ. 証明ができるように、使う場面以前に材料が与えてある (81 のいずれかの形態になっているのがフツウですが, たまに, そうでない出題も あります。 だから,この結果は知っておくにこしたことはありません。もちろん, 証明 の手順もそうです.(1) や (2)で不等式の証明 (3)で極限という流れは44,45で 学んだはさみうちの原理です. (1) f(x)=- 解答 +x+1) とおく. 導関数単調なら 元も単調 プラス f(x)は常にチン なります。 0< 2x 2 x2+2x+2 より 2 x+2+ I (3)(2)において,r=log- og / とおくと,t+0 のとき,x→∞ *†, e² = elog = 1, x=-logt だから, lim(-tlogt)=limax=0 t→+0 また, lim (-tlogt)=-lim (tlogt) 1 t+0 t+0 limtlogt0 すなわち, limxlogx = 0 t→ +0 x+0 f'(x)=e-(x+1), f"(x)=e²-1 のちて分からない >0 のとき,> が成りたち, f(x)>0 接線傾きつまり f(x)の上昇、下降 したがって、f'(x)はx>0 において単調増加。 を表す! ここで,f'(0)=0 だから, x>0 のとき,f'(x)>0 よって, f(x)はx>0において単調増加. ここで,f(0) =0 だから,x>0 のとき, f (x)>0 ゆえに、x>0のとき、12++1 ポイント IC lim =0 lim log x 8 et →∞ I 演習問題 81 =0 lim xlogx=0 x+0 (1)x>0 10g を示せ. (2) lim log x I -= 0 を示せ. 第5章

解決済み 回答数: 1
数学 高校生

黄色のマーカーのところなんですが 、a=0はダメなのは、共有点が1個しかないからですか?

III型 は、f(x1=0を満たし、 -(x+4) e-(1){ e -(x+1) の初項b, から第 でf(x)の符号が変化するような父の 値が-2cxc2の範囲で存在するこ e とであるから、 -2<000. 050-2 sinno の累乗 7nx 12 整数 N [3] 微分法 【III型 必須問題】 (配点 40点) aは実数の定数とし、関数f(x) を f(x)-(a-sinx-cos x) (0<x<2) により定める。ただしは自然対数の底であ る。 (1) f(x)が極値をもつときの値の範囲を求 めよ、 (2) f(x) が極値を2つもつときを考える。 極値 の積が負となるとき、aの値の範囲を求めよ。 また、極値の積が1/2-3 となるときのa の値をすべて求めよ。 【配点】 で bm まで (1) 14 点 (2) 26点 〈設問別学力要素> うなの値の範囲を求めればよい。 )に代 y-2sinx ymo 図より。 求めるαの値の範囲は,=(x)> -2<a≤2. (2)/(x)が極値を2つもつための条件は、 グラフ V'(x) =0を満たし、かつ、 その前後でf'(x) の符号が変化するようなx が 0x2 既に2つ存在することであり,(1)と同様に考 えると、そのようなαの値の範囲は、 2 <a<0.0<a<2 である. 知識 考力 大間 分野 内容 配点 小間 配点 表現力 このとき 技能 (判断力 3 微分法 40点 (1) 14 26 2 イコールだめ I 表現 |||| ま 出題のねらい 導関数の符号の変化を正しく把握できるか,ま また、導関数の符号の変化と極値との関係が理解で きているかを確認する問題である。 解答 (1) f(x)=ex(a-sinx-cosx) より, te (—cosx+sinx) 2sinx = α, すなわち, sinx=1 だから 極大 は2つの解をもち、その2解を x=dB(a<B) とすると, f(x) は x=α, β で値をとる。 また、 より、 a+B 2 α+βπ または α+B=3. Bα または β=3π-α. いずれの場合も、 sinsina, cosβ=-cosa であることに留意すると、 これが2次方程式では f'(x)=-ex(a-sinx-cosx) =ex(2sinx-a). f(x) が極値をもつための条件は,f'(x) = 0 を満たし、かつ、 その前後でf'(x)の符号が 変化するようなxが0<x<2mの範囲に存在 することである。 ex0 であるから, ①より, 2sinx>a のとき,f'(x) > 0, 2sinx<a のとき,f'(x) < 0 となる. よって、 0<x<2mの範囲において =2sinx のグラフと直線 y=a が共有点を もち、かつ、その共有点の前後で y=2sinx のグラフと直線 y=aの上下関係が変わるよ f(a)=e (a-sina-cosa), (B)=e(a-sinβ-cosβ) =e-(a-sina+cosa) であるから, 極値の積は, f(a)f(B) =e だった! -(a+B) (a-sina-cosa) (a-sina+cosa) =e(a+0) a+n){ (a-sina)-costa} =e-(a+b) { (a_sina)2-(1-sin'a) } e-(a+B) (a2-1-2asina+2sina) となる. αの定義から sina= が成り立つから, 3 に用いると, -37- - f() = ee (a-stup-n la-sinxtco

解決済み 回答数: 1