学年

質問の種類

古文 高校生

⑤、⑨が已然形 ⑪連用形⑫連体形⑱終止形になんでなるのですか?

3 台灣衛星予備校 健 用言の活用 Kenji 動詞の活用 〈練習問題〉 東進衛星予 実力講師 で古文を から応用ま 明かし、 や古文 国の受験 へと引 古文読 文単語 クス) (学 さあ次は 問題を解いて みましょう! とし。 問 次の文章を読み、あとの問に答えよ。 ゆく川の流れは絶えずして、しかも、もとの水にあらず。よどみに浮かぶうたかたは、かつ 消えかつ結びて、久しくとどまりたるためしなし。世の中にある人とすみかと、またかくのご みやこ こい いらか いや あした かた " たましきの都のうちに、棟を並べ、甍を争へる、高き、卑しき、人のすまひは、世々を経て 尽きせぬものなれど、これをまことかと尋ぬれば、昔ありし家はまれなり。あるいは去年焼け 今年作り。あるいは大家滅びて小家となる。住む人もこれに同じ。所も変はらず、人も多 かれいにしへ見し人は、二、三十人が中に、わづかにひとりふたりなり。朝に死に、夕べに 生まるるならひ、ただ水のあわにぞ似たりける。知らず、生まれ死ぬる人、いづ方より来たり いづ方へ去る。また知らず、仮の宿り、たがためにか心を悩まし、何によりてか目を喜 ばしむる。その、主とみかと、無常を争ふさま、いはば朝顔の露に異ならず。あるいは露落 ちて花残れり。残るといへども朝日に枯れぬ。あるいは花しぼみて露なほ消えず。消えずとい 「方丈記』 あるじ へどもりを待つことなし。 問傍線部①~2の動詞の活用の種類は何か。 ア~ケの記号で答えよ。 ア… 四段活用 イナ行変格活用 ウ・・・ラ行変格活用エ…下一 上二段活用 キ・・・下二段活用 ク ・・・カ 別冊 P.5

回答募集中 回答数: 0
古文 高校生

⑮は来の連用形にたり完了の助動詞がついた語と別の語とあるのですがどうやって見分けるのですか?また、⑤の争へるはるは助動詞りの連体形で四段活用動詞の已然形に接続するとあるのですがりはサ行変格活用動詞未然形にもつくのではないでしょうか❓(т-т)

とし。 ール・予 用言の活用 汫健二 OMII Kenj 動詞の活用 <練習問題〉 問 次の文章を読み、あとの問に答えよ。 ル 東進衛星予備 5热血实力講師。轻 テンポで古文を「ビ 基礎から応用まで、 解き明かし、読解 秘訣や古文常識も 全国の受験生を ・ベルへと引き上 キの古文読解をは 「古文単語 FOR 次は ブックス)、「富井 S 問題を解いて みましょう! ~3」 (学研)など ゆく川の流れは絶えずして、しかも、もとの水にあらず。よどみに浮かぶうたかたは、かつ 消えかつ結びて、久しくとどまりたるためしなし。世の中にある人とすみかと、またかくのご たましきの都のうちに、棟を並べ、薨を争へる、高き、郫しき、人のすまひは、世々を経て 尽きせぬものなれど、これをまことかと尋ぬれば、昔ありし家はまれなり。あるいは去年焼け て今年作れり。あるいは大家滅びて小家となる。住む人もこれに同じ。所も変はらず、人も多 かれど、いにしへ見し人は、二、三十人が中に、わづかにひとりふたりなり。朝に死に、夕べに 生まるるならひ、ただ水のあわにぞいたりける。知らず、生まれ死ぬる人、いづ方より来たり いづ方へか去る。また知らず、仮の宿り、たがためにか心を悩まし、何によりてか目を喜 ばしむる。その、主とすみかと、無常を争ふさま、 いはば朝顔の露に異ならず。あるいは露落 るといへども朝日に枯れぬ。あるいは花しぼみて露なほ消えず。消えずとい 残ると ちて花現れり。 ヘどもを持つことなし。 「方丈記」 ア…四段活用 イ…ナ行変格活用 ウ・・・ラ行変格活用 上二段活用 キ・・・下二段活用 ク…カ行変格活用 エ…下一段活用 オ…上一段活用 ケ・・・サ行変格活用 問傍線部①~2の動詞の活用の種類は何か。 ア~ケの記号で答えよ。 解答解说 問傍線部①~2の動詞の活用形は何か。a~fの記号で答えよ。 a…未然形b…連用形 C.終止形 d… 連体形 e…已然形 f命令形 「ズ判別法」にはもう慣れたかな? 間違えたところはちゃんとチェックしよう! ①キウキ ⑨キ ⑥ア ⑥キキキ⑨ア カ ⑩オキオイ 1 ア ア リ カ ア ア 2 キ 問二 OB @ OD OD U ⑥ b 80 ① 10 ⑦ b 1C [たり」の付いた「来たり」来た・来ている)とは別の話。 →1の「来たり」は四段活用動詞「来たる」(やってくる)の連用形。 力変動詞「来」の連用形(来)に完了の助動詞 用言の活用 動詞の活用 練習問題 M ●動詞は、「ズ」の直前が 「~a」の音で終わればほとんど 「四段」、 「~ i」なら「上二段」、 「e」なら「下二段」 と覚えていいのだ! 例外に 注意することを忘れなければいいのだ。 ◆争へる・・・ 「争へる」。 この「る」は、完了 (存続) の助動詞 [り] の連 体形なのだ。 [り] は、 四段活用動詞の已然形に接続する。 だから、「争 へ」は四段活用動詞已然形なのだ。(→P45) 別冊 P.5 24

回答募集中 回答数: 0
数学 高校生

数2の質問です! 123の(3)を教えてほしいです!! よろしくおねがいします🙇🏻‍♀️՞

第3章 図形と方程式 2つの円の交点を通る図形 テーマ 55 2つの円の交点を通る図形 2つの円x2+y²-6x4y+12=0 ・・・ ①, x2+y²-2x-2y=0 について、次の問いに答えよ。 (1) 2つの円 ①. ② は2点で交わることを示せ。 56 (2) 2つの円①, ② の2つの交点と点 (4, 0) を通る円の方程式を求めよ。 (1)半径がそれぞれR, (R>r) である2つの円の中心間の距離をdとすると 2つの円が2点で交わるR-r<d<R+r (2) 方程式 (x2+y²-6x-4y+12)+k(x+y-2x-2y)=0の表す図形は k-1のとき2つの円の2つの交点を通る円 k=-1のとき 2つの円の2つの交点を通る直線 解答 (1) ① を変形すると (x-3)+(y-2)=1 よって, 円 ① の中心は点 (3, 2), 半径は 1である。 (x-1)+(y-1)=2 ② を変形すると よって, 円 ② の中心は点 (1, 1), 半径は √2である。 2つの円 ①,②の中心間の距離は d=√(3-1)+(2-1)'=√5 ② 半径√2 図形 ③点 (40) を通るとき これを③に代入して整理すると これが求める円の方程式である。 応用 2 (1,1) ① 半径1 (3,2) DALLA ゆえに √2-1<d<√2+1 したがって、 2つの円 ①, ② は2点で交わる。 終 (2) kを定数として, 方程式 (x2+y²-6x-4y+12)+k(x2+y²-2x-2y)=0 ③ を考える。 (1) により、2つの円 ①,②は2点で交わり、③は2つの円 ①,②の 2つの交点を通る図形を表す。 1 4+8k=0> よって k=-- x2+y²-10x-6y+24= 0 2 ①, x2+y2=4 (2 123 2つの円x2+y²-8x-4y+4=0 ついて,次の問いに答えよ。 2つの円 ①,②は2点で交わることを示せ。 2つの円①② の2つの交点と点 (1,1)を通る円の方程式を求めよ。 2つの円 ①,②の2つの交点を通る直線の方程式を求めよ。 28 基本と演習テーマ 数学ⅡI 122 (1) 円+y=18は中 心が原点, 半径が3√2の 円である。 2つの円の中心間の距離d は d=√12+(-7) =√50=5√2 2つの円が外接するとき 求める円の半径を 5√2=r+3√2 とすると これを解くと=2√2 よって, 求める円の方程式は (x-1)²+(y-(-7))^²=(√2)^ すなわち (x-1)²+(y+7)²=8 (2) x2+y²-12.x +4y+390 を変形すると (x-6)^+(y+2)=1 110 ...... 114 これは,中心が点 -7 123 (1) ① を変形すると (x-4)²+(y-2)² 44) (x-3)²+(y-2)² = 6² すなわち (x-3)^+(y-2)^²=36 (6, -2), 半径が1の円 を表す。( 2つの円の中心間の距離 dは 前 d=√(3-6)^2+(2-(-2))=√25=5 2つの円が内接するとき 求める円の半径を とすると, 図より 5=y-1 これを解くとv=6 よって, 求める円の方程式は y1 2 O =16 よって, 円 ① の中 ② 半径2 心は点 (4,2), 半径 は4である。 円 ② の中心は 点 (0, 0), 半径は2である。 円 ①,②の中心間の距離は + x -2 6 O ① 半径4 d. (4,2) x 形 ③点 (1,1)を通るとき 月①,②の2つの交点を図形を表 -6-2k=0 x2+y2+4x+2y-80 これが求める円の方程式である。 (3) ③ において, k=1 とすると -8x-4y+8= 2x+y20 124 (1) 求める軌跡は, 直線y=1からの距離 が2で、 直線y=1と 平行な2直線である。 よって 直線y=3, 直線y=-1 (2) 求める軌跡は,線分 ABの垂直二等分線で ある。 よって pold=√42+22=√2=2√5 4−2<d<4+2であるから, 円 ①,②は2点 で交わる。 (2) kを定数として, 方程式 よってk=3 これを③に代入して整理すると (x2+y2-8x-4y+4)+k(x²+y²-4) = 0 ...... (3) を考える。 (1) により, 円 ①, ② は2点で交わり, ③は すなわち これが求める直線の方程式である。 直線 x=2 (3) 求める軌跡は, *+(y-2)=16 点 (1,2)を中心とする 半径3の円である P (2) AP¹=x-(-3)= BP=(x-3)² + AP' + BP=20で (x+3)²+y = 整理すると したがって、点 逆に、この円上 て, AP3 + BP- よって 求め 原点を (3) A.P'=x- BP2=(x- AP2-BP2- 0 AB (1,2) (x+ 整理すると したがって 逆にこ いて, A よって, 126PC とする。 Pに関す AE 125 点Pの座標を(x,y)とする (1) AP2=(x-2)^2+y2, BP2=x2+(y-6° AP=BP より, AP2=BP2であるから (x-2)2+y2=x2+(y-6)²2 これよ すなわ AP2= BP2= B = す し あ 3 整理すると x-3y+8=0 したがって, 点Pは直線x-3y+8= 0 上にあ る。 逆に,この直線上のすべての点P(x,y) につ いて, AP BP が成り立つ。 よって, 求める軌跡は 直線x-3y+8=1|

回答募集中 回答数: 0
理科 中学生

3がァになる理由が分かりません。なぜプラス側に触れてからマイナス側に触れるんでしょう?

る。 子 コードに電流を流し 3 コイルP ル内部の +端子 検流計 棒磁石 ・石を動かす ない 検流計の針の の振れ 左 てない 右 りするカ う流れこ い。 イルP 電流 べた とき、 IC カードリーダーに 5.0Vの電圧で200mAの電流が流れる 15 し、空気抵抗は無視できるものとする。 【実験 1】 図 1 スタンドに固定したコ イルに流れる電流の向き と大きさを調べるため に、図1のような装置を 組み オシロスコープに つないだ。 オシロスコー プは、表示画面に,コイ ルに流れる電流の向きと 大きさを波形で表すこと ができる。 表示画面の縦 軸は電流の向きと大きさを示し,横 軸は経過時間を示している。 図1の 状態からN極が下を向くようにし て, 上から磁石をコイルに近づけた。 図2は、このときの, オシロスコープ の画面を模式的に表したものである。 【実験2】 図1の状態から、静かに磁石から手をはなし,磁石が コイルに触れないように, 磁石のN極は下向きのままで, コイルの中を通過させた。このときの, オシロスコープ の画面を観察した。 1. 実験1について, コイルに磁石を近づけたときにコイ ルに電圧が生じる現象を何というか, 書きなさい。 2. 発電所では,実験1の現象を応用して発電し、その電 気を家庭に供給している。 家庭で使用される5WのLED 電球を30分間点灯させたときに消費する電力量は何Jか, 求めなさい。 13. 実験2について, オシロスコープの画面を模式的に表 したものとして最も適切なものはどれか,次のア~エか ら一つ選び,記号で答えなさい。 ア イ ウ + 秒間流れたときの電力量は何Jか, 求めなさい。 ことがわかった。 このICカードリーダーに、電流が2.0 時間 コイルに流れる電流について調べるために、次の実 1,2を行った。 あとの問いに答えなさい。 ただ 電流 時間 電流 S N \スタンド + 時間 < 秋田県 > 一磁石 図2 + 電流 電 the o オシロス 「コープへ コイル 時間 I 流 時間 変化す に電流が流れる。これによ て、 カードリーダーはICチップの ができる。 0.2 5 (x2¹27 880 5× 9000

回答募集中 回答数: 0