学年

質問の種類

数学 高校生

微文法と積分法の範囲の極限値についてで、 1枚目の🟧のマーカーの部分で 『hが限りなく0に近づくとき』とありますが、 2枚目の問題の(1)、(2)の答えはそれぞれ4と3であって、それはhに代入する数と等しく、それぞれの( )の中身を0にするための数なのですか?? 語彙力ない... 続きを読む

次の平均変化率を求めよ。 練習 1 (1) 1次関数y=2x の, x=a から x = 6 までの平均変化率 (2) 2次関数y=-x2 の, x=2から x=2+hまでの平均変化率 B 極限値 5 例1で求めた平均変化率 2+hの値について,xの変化量んを 0.1, 0.01, 0.001, 0.0001, または -0.1, -0.01, 0.001, -0.0001, h < 0 でもよい。 のように, 0 の両側から0に限りなく近づけてみよう。 すると、下の表からもわかるように、2+hは2に限りなく近づく。 10 h -0.1 -0.01 -0.001 -0.0001 0 0.0001 0.001 0.01 0.1 2+h 1.9 1.99 1.999 1.9999 2 2.0001 2.001 2.01 2.1 このことを, りなく 代 軽くげんちら(笑 -f(a) 15 I んが0に限りなく近づくとき, 2+hの極限値は2である といい, 記号lim を用いて次のように書く。 lim (2+h)=2 h→0 A+AD 第6章 微分法と積分法 注意 んが0に限りなく近づく場合, hは0と異なる値をとりながら0に近づ くと約束する。数 例2 このような極限値の例を、ほかにも示そう。 (1) lim(4-h)=4 014 (2) lim (3+3h+h²)=3 h→0 3h とんはどちらも 終 20に限りなく近づく。 練習 次の極限値を求めよ。 2 (1) lim (6+h) (2) lim(12-6h+h²) ho h→0 ((木) 20 20 * lim は 「極限」 を意味する英語 limit を略したものである。

解決済み 回答数: 1
数学 高校生

微分についての質問です。一枚目の写真で青マーカーを引いたところには、「三次不等式はグラフを利用して求める。極値を求める必要はない。」とありますが、例題212.213では極値を出して解いている気がします。 ・なぜ例題212.213では極値を出して、例題216では極値を出して... 続きを読む

2 406 第6章 微分法改 練習 [216] **** 7956 く 50 785 2210 196 例題 216 三角不等式 **** cos 30 + cos 20+ cos >0 を満たす0の値の範囲を求めよ.ただし, 0≦02 考え方 解答 とする. 例題 212(p.402) と同様にして3次関数のグラフとx軸の位置関係を考える. まず cosa=t とおき,tの3次不等式を作る cost とおくと,002πより、 また, cos30=4cos0-3cos0=4t-3t cos 20=2 cos 0-1=2t2-1 4t3+2t-2t-1>0 したがって, 与式は, (4t-3t) + (2-1) +t>0 2t2(2t+1)-(2t+1)>0 (2t+1)(2-1)>0 ...... ② (2t+1)(2-1)= 0 とすると, tの値の範囲に注意 与式の左辺を cosで 統一する。そのとき 倍角,2倍角の公式を 利用する. ((p.269 参照) 組み合わせを考えて, 因数分解する。 [解] Commen ここ こで, 2 線が一致 200 とし, 線をも この √2 1 1 t=- 0 2' √2 2 y=4t+2t-2t-1 のグラフは, 右の図のようになる. したがって、②の解は、 ①より RD 3次不等式はグラフを 利用して考える. 極値 を求める必要はない。 30 1 <t≦1 √2 2√2 よって,t=cos 0,0≦02 より 0≤0< 単位円を利用して8の 範囲を求める. て π 第3,4象限の解と第2, 2 3 147 4 1 √2- 1象限の解は,それぞ 例 0 5 << 27 << れx軸に関して対称 10 1 x 43 7 3π 1 4π 注〉和積の公式を用いて次のように解くこともできる. (p.274 参照) ( cos30 + cos 0) + cos20>0 2 cos 20 cos 0+ cos 20>0 cos 20 (2 cos 0+1)>0 (2cos'0-1)(2cos0+1)>0 ここで, cosa=t とおくと, cosA+ cosB=2cos- A+B A-B COS 2 2 (2t2-1)(2t+1)>0 あとは、例題216と同様にして解けばよい. tan 20 + tan00 を満たす 0 の値の範囲を求めよ。ただし,0≦02 とする. 次

回答募集中 回答数: 0
数学 高校生

数2の質問です! 240の[ ] で囲んであるところは どこから読み取れるのかを教えてほしいです! よろしくおねがいします🙇🏻‍♀️՞

な直線が,右の図のように異なる2点A, B で 交わっている。 このとき, 原点を0として | △OAB の面積Sの最大値とそのときの点 A, Bの座標を求めよ。 A J B √3 v3 0 考え方 文章題では何を変数にするかがポイントである。なるべく計算がらくにな るように決めるとよい。 本間では,△OAB y 軸に関して対称であるから, 点Bのx座標を x とすると, 2点A, B の座標がx で表せる。 あとはS をxの式で表し,変数xのとりうる値の範囲に注意して, Sの増減を調べ る。 解答 2点A,Bはy軸に関して対称であるから A (-x, 3-x2), B(x, 3-x2) ただし0<x<3 1 とおける。 このとき S=1/2x(3-x2)=-x+3x 2 S'=-3x2+3=-3(x+1)(x-1) ①の範囲において, S' = 0 となるのは, x 0 ... 1 √3 S' + 0 x=1のときであり, Sの増減表は、右のよう になる。 S K 2 よって, Sはx=1で最大値2をとる。 このとき, A, B の座標は (-1,2), (1,2) 放物線y=-x2+12とx軸で囲まれた図形に内接する長方形 □ 練習 239 ABCD の面積S の最大値を求めよ。 ただし, 2点A, B はx軸上にある ものとする。 第6章 微分法と積分法 ... 12 x 0 S' + 0 - 極大 S 32 2√3 増減 最大 よって, Sはx=2で最大値32をとる。 は Sが最大になるときの長方形の頂点の座標 (-2, 0), (2, 0), (2, 8), (-2, 8) BAS 240 1 右の図のように 点Aをとる。 △OAH において, 三平方の定理により AH=√OA2-OH =√32-x2 3 H 0+1=√√91x2 A よって V=AH2×2OH =π(9-x2) x2x =-2π(x3-9x) OHの長さは球の半径より小さいから,xのと りうる値の範囲は 0<x<3 ...... ① (2) V'=-2π(3x2-9)=-6z(x-3) =-6z(x+√3)(x-√3) ①の範囲において, V'=0 となるのは, x=√3 のときであり, Vの増減表は次のよう になる。 x 0 √3 V' + 0 極大 [V 12√3 ... 3 [1] ■ 練習 240 右の図のように, 点0を中心とする半 径3の球に直円柱が内接している。 この直円柱の 体積をVとするとき, 次の問いに答えよ。 (1)点0から直円柱の底面に引いた垂線 OH の長 さをxとするとき, Vをxの式で表せ。 3 また, xのとりうる値の範囲を求めよ。 (2)Vの最大値を求めよ。 H よって, Vはx=√3 で最大値12/3をとる 241 f'(x) =3x2-27a2=3(x+3a)(x-3) f'(x) =0 とすると x=±3a またf(0) = 0, f(3) =27-812 (1) 0<a<1であるから 0<3a<3 よって, f(x) の増減表は次のようになる。 x 0 f'(x) ... 3a 0 + 極小 f(x) 0 3 727-81a2 -54a3

解決済み 回答数: 1