学年

質問の種類

数学 高校生

(1)も(2)も線で引いた所が分かりません。線で引いた所どうやってでてくるのですか? 途中式あればお願いしたいです。

2直線x+y-4=0 ①, 2x-y+1=0... たす直線の方程式を,それぞれ求めよ。 (1) 点(-1, 2) を通る 解答」 kは定数とする。 方程式 k(x+y-4)+2x-y+1=0 ..... ③は, 2直線 ①, ② の交点を通る直線を表す。 (1) 直線 ③ が点 (-1, 2) を通るから - 3k-3=0 すなわち k =-1 指針 2直線 ①, ② の交点を通る直線の方程式として、次の方程式 ③ を考える。 k (x+y-4)+2xy+1=0(kは定数) (1) 直線 ③ が点(-1,2) を通るとして, kの値を決定する。 (2) 平行条件 babı = 0 を利用するために, ③ をx, yについて整理する。 CHART 2直線f = 0, g=0 の交点を通る直線 kf+g = 0 を利用 これを③に代入して -(x+y-4) +2x-y+1=0 すなわち x-2y+5=0 (2) ③をx,yについて整理して (2) 直線x+2y+2=0 に平行 (-1,2) 12 0000 ② の交点を通り、次の条件を満 1 (k+2)x+(k-1)y-4k+1=0 直線 ③ が直線 x+2y+2=0に平行であるための条件は (k+2)-2-(k-1)-1=0 よって k=-5 これを③に代入して -5(x+y-4)+2x-y+1=0 すなわち x+2y-7=0 基本 78 別解として2直線の交点の 座標を求める方法もあるが, 左の解法は今後,重要な手法 となる(p.160 基本例題104 参照)。 検討 与えられた2直線は平行でな いことがすぐにわかるから, 確かに交わる。 しかし、交わ るかどうかが不明である2直 線f = 0,g=0 の場合, kf+g=0の形から求めるに は 2直線が交わる条件も必 ず求めておかなければならな い。 3 1

解決済み 回答数: 1
物理 高校生

物理の薄膜による干渉の問題です。 写真3枚目、(8)の「m=0ではiを大きくしたときに次の極大点を取り得ない」というところの理由が分かりません。 m=0のとき光路差はちょうど半波長になると思いますが、このとき入射光を大きくしても、干渉光が再び最大の明るさになることはないとい... 続きを読む

12光 991.〈薄膜による光の干渉〉 図1に示すように,空気中で水平面上に置かれた屈折率 n の平坦なガラ (1) ス板の上に,屈折率 n で一様な厚さdをもつ薄膜が広がっている。波長 の単色光を薄膜表面に対して垂直に入射させ,薄膜の上面で反射する光線 ① 空気 と。薄膜とガラス板の間の平坦な境界面で反射する光線②の干渉を考える。 光線①と光線②が干渉して生じた光のことを干渉光とよぶ。いま,空気の屈 折率を1とし,n>n>1 の場合を考える。 屈折率 n1, n2 が光の波長によっ て変わらないとして,次の問いに答えよ。 薄膜 (2) (1)薄膜中の光の波長 入 を, n1, 入。 を用いて表せ。 (2)薄膜の厚さを0から連続的に増していくと, 光線 ①と光線 ② からなる干渉光は,強めあっ て明るくなったり,弱めあって暗くなったりした。 干渉光の明るさがん回目の極大となっ たときの薄膜の厚さ dk を, n1, do, k (k=1,2,3, ・・・) を用いて表せ。 (3) 薄膜の厚さ dk のときに, 入射する単色光の波長を入から短くしていくと, 干渉光は一度 暗くなった後,再び明るくなり極大となった。 このときの入射光の波長入を 入o, kを用 いて表せ。 13 14 (4) (3)の観測において,入射光が入。=500nmで明るかった干渉光は、波長を短くしていくと, 一度暗くなった後, A2=433nm で再び明るくなった。 薄膜の屈折率を n = 2.0 として 波 73 の厚さdkの値を求めよ。 次に,図2に示すように, 波長入 の単色光を薄膜表面の法線に対 して入射角(i<90°)で入射させた。このとき,薄膜の上面で反 射する光線 ① と, 薄膜の上面において屈折角で屈折して薄膜とガ ラス板の間の平坦な境界で反射し、薄膜の上面に出てくる光線②と の干渉を考える。 これらの光線は図中の点 A1, A2 において同位相 であるとする。 図2 (5) 薄膜の屈折率 n, 入射角i, 屈折角の間の関係式を示せ。 (6) 光線①と光線②の干渉光が強めあって明るくなる条件を,屈折角 1,屈折率 n, 厚さd, 入射光の波長 入と整数m (m=0, 1 2 3 ) を用いて表せ。 (7) (6)の条件を,入射角i,屈折率n,厚さd,入射光の波長 入と整数m (m=0,1,2,3, ・・・) を用いて表せ。 (8) 垂直入射(入射角 i=0°) で明るかった干渉光は入射角を大きくしていくと,一度暗 くなった後、再び明るくなり極大となった。このときの入射角を i=i としたとき、ふと 薄膜の屈折率 n1, 整数mが満たす関係式を求めよ。 ①1 空気 薄膜 ガラス板 ガラス板 図 1 法線 法線 A [17 大阪府大改]

解決済み 回答数: 1
数学 高校生

赤線のところは何故こうなるのですか 異なる6個、3個ってどのことですか?

350 重要 例題 35 数字の順列 (数の大小関係が条件) α, α5) の個数を求めよ。 (2) 0≤a₁ ≤a₂≤a3 ≤a₁ ≤as≤3 次の条件を満たす整数の組(a1,a2,a3, (1) 0<a₁<a₂<a<a₁<as<9 (3) aitaztastastas≦3, a;≧0(i=1,2,3,4,5) 指針 (1) ar, a2, ......, as はすべて異なるから, 1, 2, , 8の8個の数字から異なる を選び, 小さい順に α1, Q2, ......, α5 を対応させればよい。 求める個数は組合せ Cs に一致する。 (2) (1) とは違って, 条件の式にを含むから, 0, 1, 2,3の4個の数字から重複を許し て5個を選び, 小さい順に a1,a2, ・・・..., as を対応させればよい。 求める個数は重複組合せ H5 に一致する。 (3) おき換えを利用すると,不等式の条件を等式の条件に変更できる。 (a+az+ax+a+αs) = b とおくとa+a2+ax+a+as+b=3 また, a+a+astastas≦3 から b≥0 よって、 基本例題 34 (1) と同様にして求められる。 解答 (1) 1,2, - 順に a1,a2, 8の8個の数字から異なる5個を選び, 小さい ・・・・・・, as とすると, 条件を満たす組が1つ決ま る。 よって, 求める組の個数は 8C5=8C3=56 (1) (20,1,2,3の4個の数字から重複を許して5個を選び,小 さい順に a1,a2, ・・・・・・, as とすると, 条件を満たす組が1つ 決まる。 基本333 よって、求める組の個数は 4H5=4+5-1C5=8C5=56 (個) (3) 3-(a1+a2+a3+a+as)=6とおくと a1+a2+ax+a+α5+6=3, ① ai≧0 (i=1,2,3,4,5),6≧0 よって, 求める組の個数は, ① を満たす 0 以上の整数の組の 個数に等しい。これは異なる6個のものから3個取る重複組 合せの総数に等しく 6H3=6+3-1C3=gC3=56 (個) 別解a+a2+ax+a+as=k(k=0,123) を満たす 0 以 上の整数の組(a, a2, a3, 4, as) の数は 5Hk であるから sHo+sHi+sHz+sH3=&Co+5C1+6C2+ C3 =1+5+15+35=56 (個) ← 等式 検討 (2)(3)次 うにして解くこともできる。 (2) [p.348 検討の方法の利 用] b;=a;+i(i=1,2,1 4,5)とすると,条件は 0<b₁<b₂<b3<b4<bs<9 と同値になる。よって、 (1) の結果から 56個 (3)3個の○と5個の仕切り を並べ,例えば, |〇|〇〇|| の場合は (0, 1,020) を表すと 考える。このとき A|B|C|D|E|F とすると, A,B,C,D, Eの部分に入る○の数をそ れぞれ a1, a2, 3, 4,0 とすれば組が1つ決まるか ら 8C3=56 (1)

回答募集中 回答数: 0