学年

質問の種類

化学 高校生

(2)が分かりません。教えてください!

以上の実験甲と乙の結果について, 仮説Ⅰと仮説Ⅱをもとにして,上記の 「目的」に沿って考察 したい。 次の問 (1)~(5) に答えよ。 (1) 実験甲に関する以下の文章中の①から⑩ に入る適切な語句を答えよ。 ただし, ① ~⑨について は語句群 a から, ⑩~1については語句群bから選び, 記号 (ア)~(ト)で答えよ。 同じ語句は複数回 選んでもよい。 ただし, 語句群b中にあるnは正の整数とする。 仮説ⅡIに基づけば、同温, 同圧で, ある体積Vには N個の“最小粒子” があるとすることが できる。AからDの体積Vの重さxは,x = ( ① )の重さ×Nとなり,同体積の水素ガスの重さ yy=(②)の重さ×Nとなる。 AからDについて, xをyで割ることで求められるかは, (③)の重さを1としたときのAからDの ( 4 )の相対的な重さとなる。 gは,AからDの(⑤)に含まれる(⑥)の重さの割合 (0≦g ≦1)であることからとgの 積は,(⑦)の重さを1としたときの, AからDの(⑧)に含まれる(⑨)の相対的な重さ を示す。ただし,このことから,(⑧ )に含まれる(⑨)の“基本粒子” の数がただちに 分かるわけではない。 そこで,AからDについて ♪とqの積の値に注目すると, 0.50 が最小値であり,また,それ ぞれの値の関係は不連続であり,その差の特徴は,最小値の倍数である。 これらのことと,“基本 粒子”が分割不可能であることから, 0.50 を(⑨ )の“基本粒子” ( ⑩ ) 個の相対的な重さ と考えることができる。 従って, A, B, C, D の ( ⑧ )に含まれる( ⑨)の“基本粒子” の 数は,Aでは ① )個, B では ( 12 ) 個, Cでは(13)個, D では ( 14 ) 個となる。 [語句群 a] (ア) 塩素, (イ) 酸素, (ウ) 水素, (エ) 窒素, (オ) 水素ガスの“最小粒子”一個, (カ) 水素の“基本粒子” 一個, (キ) 酸素ガスの “最小粒子”一個, (ク) 酸素の“基本粒子”一個, (ケ)物質の“最小粒子”一個, (コ) 物質を構成する “基本粒子”一個 [語句群 b] (#) n, (V) 1.5n, (7) 2n, (t) 2.5n, () 3n, (7) 1, (f) 1.5, () 2, (7) 2.5, (h) 3 (2)(1)で記した実験甲に対する考察の結果, 仮説 Iについて矛盾が生じ, 若干の修正がなされ る。その矛盾について, その矛盾が生じるのは仮説Ⅰの(i)から(vi) のどの項目か。 またその 矛盾の内容について 150文字以内で記せ。 (3)水素と他の元素から成る,ある物質Xについて, 実験甲と同様の実験を行ったとする。仮に その結果が,pxg=0.25であったとしたとき,表1のA~Dに対する結果を併せるとAの “最小粒子”一個に含まれる水素の “基本粒子” の数はどのようなものになると考えられるか。 (4) 実験乙におけるrは何の量を表すか。 30文字以内で書け。 (5)実験の結果からC, E,F の “最小粒子” 一個に含まれる酸素の “基本粒子” の数はどの ようなものになるか。 (お茶の水女子大学)

回答募集中 回答数: 0
数学 高校生

【1】赤で囲った所n=3k+2ってしたんですけど9【3k3乗-6k2乗+4k+1】でも大丈夫ですか? 【2】n=3k+2をn3乗に代入しても大丈夫ですか? また私の回答って満点もらえますか? 字があまり丁寧ではなくてすみません。

第8章 801 正の整数で割った余りによる整数の分類 任意の整数nに対して,n-rは72で割り切れることを示せ。 |精講 (京都大*) 7298 で, 9と8は互いに素ですから、ある整数が72で割 り切れることを示すには, Nが9の倍数であり,かつ,8の倍数 であることを示すとよいのです。 n-㎡が9の倍数であることを示すためには,nを3で割ったときの余りで 場合分けをして,8の倍数であることについてはnを2で割った余りで、つま り,nの偶奇で場合分けをして調べることになります。そこで、次のことを確 認しておきましょう。 を正の整数とするとき,整数nをで割った余りはあ ころひょうたう。で のいずれかであるから, n は整数mを用いて 01, 2,..., p-1 うんと同じ PU のいずれかで表される。 pm, pm+1, pm+2, ······, pm+(p−1) 3m,3m+1,3m+2 (mは整数) たとえば,3で割った余りで分類すると, すべての整数は のいずれかで表されますが, 3m+2=3(m+1)-1 ですから, すべての整数は 3m,3m±1mは整数) のいずれかで表されると考えることもできます。 問題処理においては,Aより もBの方が見かけ上の場合分けが少なくてすむ利点があります。 <解答 まず, N=n³-n³=n³(n³-1)(n³+1) として,Nが9の倍数であることをn=3m,3m±1 ( は整数)の場合に分けて示す。 ① において, n=3m のとき n³=(3m)³=27m³ n=3m+1のとき n-1=(3m+1)3-1=9(3m²+3m²+m) なぜかタイ いけない 参考 1参照。

未解決 回答数: 0
数学 高校生

赤く印をつけたところが分かりません。 どなたか解説お願いします🤲

442 重要 例題 131 N” の一の位の数 散料 (1) 182020 10進法で表すとき,一の位の数字を求めよ。 (2) 1718 を5進法で表すとき,一の位の数字を求めよ。 CHART O 解答 OLUTION N” (N, n は自然数)の一の位の数 一の位の数字のサイクルを見つける ・・・・・・ (1)18の一の位の数字8 に着目して 8×8=64 から 182 の一の位の数字は 4 更に 4×8=32,2×8=16,6×8=48 よって、18” の一の位の数字は 8 4 2 6 の繰り返しになる。 00000 基本128 (2)(1) と同様に考えて,まず 1718 を 10 進法で表したときの一の位の数字を求め る。それをαとすると 178 10A+α (Aは正の整数)と表される。 104を5 進法で表すと一の位の数字は 0 であるから, αを5進法で表したときの一の位 の数字が求める数字になる。 (1)8×8=64,4×8=32, 2×8=16,6×8=48 であるから, 18 口を10進法で表したときの一の位の数字は、4つの数 8, 4, 2, 6 の繰り返しとなる。 ここで 2020=4・505 であるから, 182020 の一の位の数字は 6 である。 (2)7×7=49,9×7=63, 3×7=21, 1×7=7 であるから, 17 を 10 進法で表したときの一の位の数字は, 4つの数 7, 9, 3, の繰り返しとなる。 1 ここで 18=4・4+2 であるから, 1718 を10進法で表したとき の一の位の数字は9である。 このとき 1718=10A+9 (Aは正の整数) と表され, 10A を 5進法で表すと,一の位の数字は 0 である。 したがって, 求める数字は9を5進法で表したときの一の位 の数字であるから, 9=5'+4 により 4 2020 を4で割ると余り は 0 よって,4つの数字 8, 426の4番目が一の 位の数字。 10A を5で割ると割り 切れるから、余りは 0 9は5進法で 14(5) ()sia-s

未解決 回答数: 1
数学 高校生

大問のなかで同じ文字を使う場合問題番号が違くても「'」をつけて区別した方がいいのでしょうか? (1)でBを使って(2)でもBを使うなど

338 第9章 整数の性質 応用問題 1 正の整数a,bに対してaをbで割った商をg,余りをとする.つ まりり a=bq+r が成り立つとする.このとき,以下が成り立つことを示せ . (1) aとbの公約数をdとすると,dはbとの公約数でもある. (2) bとの公約数をd' とすると,d' はaとbの公約数でもある. (3) aとbの最大公約数ともとの最大公約数は一致する. コメ P るも 持つ る」 る持る数は素 数 精講 ユークリッドの互除法の 「核」 となるp336の(*) を証明してみま しょう.考え方としては, 「α ともの公約数」 と 「bとrの公約数」 が(集合として)一致することを示そうというものです.それがいえれば当然, それぞれの最大公約数も等しいといえます. 解答 (1) αとの公約数がdであるから, (Res) bog a=dA, b=dB (A, B は整数) とおける.このとき r=a-bg=dA-dBg=d(A-Bg) dx (整数) なので,rはdの倍数である. (bもdの倍数でもあるので,)dはbとrの公 約数である. (2)との公約数がd' であるから, b=d'B',r=d'R (B', R は整数) とおける.このとき a=bg+r=d'B'q+d'R=d'(B'q+R) d'x (整数) なので, a は d' の倍数である. (bもd' の倍数でもあるので,d'はaとb の公約数である. αと6の公約数」は「brの公約数」と(集合として)一 致する.したがって,それぞれの最大公約数も等しくなるので、題意は示せ た.

未解決 回答数: 1