学年

質問の種類

生物 大学生・専門学校生・社会人

9番の科学研究の問題わかる方誰か教えて頂きたいです🙇‍♀️

2. 相同染色体が対合し、 〇間で交差が起こり, る. 期か 体の内側に移動するのは、とり (A) 有糸分裂 (B) 減数第一分裂 きの対が中期板に整 レベル2: 応用/解析 染色体が分離する セントロメアで接 5. する. ズマが形成さ の対が維持さ Iで切断さ -り 後期Ⅱ れて, 姉妹 合と交差 は起こら (C) 減数第二分裂 (D)受精 3. 減散第二分裂はどのような点が有糸分裂と類似 ているか. (A) 後期に姉妹染色分体が分離する。 (B) 分裂の前に DNA が複製する. (C) 娘細胞が二倍体である. (D) 相同染色体が対合する. 4. 細胞周期のG期の二倍体細胞のDNA含量をxと したとき、同じ細胞の減数第一分裂中期のDNA含 量はどれか. (A) 0.25x (B) 0.5x (C)x (D) 2x 5. 問4の細胞の系譜を追跡したとき, 減数第二分裂 中期の1個の細胞のDNA含量はどれか. (A) 0.25x (B) 0.5x (C)x (D) 2x 6. 描いてみよう 図は 減数分裂中の細胞を示 ばかすの遺伝子は染色体長腕上のF印の遺伝子座 ばか髪の色の遺伝子はH印の遺伝子座にあること 明らかとなっている。この細胞を提供した人は か々の遺伝子の異なる対立遺伝子を遺伝により受け 継いでいる (「そばかす」 と 「黒髪」の対立遺伝子 一方の親から受け継ぎ、もう一方の親から「そば かすなし」 と 「金髪」 の対立遺伝子を受け継いでい かこの図の減数分裂の結果生じる配偶子の対立 遺伝子の組み合わせを予測しなさい(後の減数分裂 の図を描いて対立遺伝子の名称を記入すると考えや すくなるだろう). また,この人のつくる他の配偶 子について,これらの対立遺伝子の組み合わせとし て可能なものをリストにして示しなさい。 10. テーマに関する小論文: 情報 生命の連続性は DNAに刻まれた遺伝情報に基づいている. 動物の 有性生殖の過程の染色体の挙動が,どのようにして 親の形質を子孫に永続的に伝達し,同時に子孫の間 に遺伝的な多様性を確保しているかを300~450字 で記述しなさい から 11. している. は (a) 以下の用語を適切 H な構造の部位に記 伝的な 入しなさい. 分配, 染色体 (複製され 受精 妹染 ているか, 未複製 組 3. 性 あ み 伝 かも記入すること), セントロメア, 動原体, 姉妹染色分体, 非姉妹染色分体, 相同染色体対 ([ ]で示すこと), 相同染色体(それぞれ記 入すること), キアズマ, 姉妹染色分体間接着, 遺伝子座 (FとHの対立遺伝子がわかるように) (b) 染色体の一倍体および二倍体の構成を記述し なさい. (c)減数分裂中のどの期か判定しなさい. レベル3: 統合/評価 7. 問6の細胞が行っているのが有糸分裂ではなく減 数分裂であることは,どの点からいえるか. 8. 進化との関連 多くの生物種は有性生殖または無 性生殖のどちらかを行う. ある生物種は、生活環境 が好ましくなくなったときに無性生殖から有性生殖 へ転換することができるが, その進化的な重要性に ついて考察しなさい. 9. 科学的研究 問6の図はある人の減数分裂中の細 胞を示したものである. これまでの研究により、 そ

回答募集中 回答数: 0
数学 高校生

数Ⅲ微分 丸で囲った sinxは単調増加であるから、という条件はどういう意味なのでしょうか? 無くてもtで置き換えてるのでできる気がするのですが…… 14番です。お願いします。

6 Check! Step Up 396 末 第6章 微分法の応用 (1)f'(x) =2me" sin(xx) +2eπCOS (πx) =2ne™x{sin(x)+cos(x)} *sin(x++) =2√2 resinx+ -1<x<1 £9,-*<**+*<z したがって、f'(x) = 0 とすると, x+4=0. π 1 より。 x=- 4'4 f(x) の増減表は次のようになる。 x -1... ..... 1 4 0 + 0 f'(x) f(x) よって 大値 ed(x=22) 極小値 -√/2e-f(x=-1/2) (2) f'(x)=1e-x+(x+1) (−2ax)e-ax2 =(-2ax2-2ax+1)e-axs f'(x) = 0 とすると, e-x2 = 0 より 2ax²-2ax+1=0 2ax2+2ax-1=0 ...... ① f(x) が極値をもつための条件は、 ①が解をもち, その 解の前後で ① の左辺の符号が変化することである. a=0 のとき, -1=0 となり不適 したがって, a=0 | 積の微分 A (e**)'=e** (xx)'= nex {sin(x)}'=cos(x)(x) 三角関数の合成 COS(x) sin(x+4)=0 -√2e- 積の微分 1 <f'(x)=0 の両辺を e-ax で 割る. 第6章 微分法の応用 映画 397 Step Up 1 <x<1/2で異なる2つの実数解をもち、その直後で(x)の 考え方> (1) f'(x) =0 が 符号が変わるようなαの値の範囲を考える. の値の範囲を求める. (2) f'(x)=0 が 0<x<πで解をもち, その前後でf'(x)の符号が変わるような (1) f(x)=2cos2x-asinx =2(1-2sin'x) -asinx =-4sin'x-asinx+2 f'(x) =0 とすると, より, -4sin x-asinx+2=0 4sinx+asinx-2=0 ...... ① f(x) が極大値と極小値をもつための条件は,①が 一覧<x< に異なる2つの実数解をもち,その解の 前後で①の左辺の符号がそれぞれ正から負,負から正に 変化することである. sinx=t とおくと, であり,①は, 4t2+at-2=0 <x<1のとき,-1<t<1 2 <x<1においてsinxは単調増加であるから ②1<<1 に異なる2つの実数解をもつとき、 f(x) が極大値と極小値をもつ. g(t)=4t+at-2 とおくと, g(0)=-2<0 より, である. g(-1)>0 かつ g (1) > 0 g(-1)=4-a-2>0より, g(1)=4+α-2>0より, a<2 a>-2 2倍角の公式 cos20=1-2sin' では調査 -1 \0 6 であるから, f(x) が極値をもつための条件は, xについ よって, -2<a<2 ての2次方程式 ①が異なる2つの実数解をもつことであ る. f'(x)≧0 重解をもつときは, または f'(x) 0 となり極値 をもたない. (2) f(x)==sinx•sinx−(a+cosx)cost sin'x sin'x ①の判別式をDとすると,0 すなわち, a²+2a>0 a<-2,0<a よって, 求めるαの値の範囲は, a<-2, 0<a t 14 (1) 関数f(x) =sin2x+acosx (-2<x<2) が極大値と極小値をもつように定数a の値の範囲を定めよ. (2)関数f(x)=+COSX (0<x<z) が極値をもつように定数a(a≠0) の値の範囲を sinx 定め,そのときの極値を求めよ. -sin'x-acosx-cos' x acosx+1 sinx f'(x)=0 とすると, acosx+1=0 ...... ① f(x) が極値をもつための条件は,① が 0<x<πに 解をもち,その前後で ① の左辺の符号が変化することで ある. COSx=t とおくと, 0<x<πのとき, -1<t<1で あり,① は, at+1=0 ・・・② 0<x<πにおいて、 COS-xは単調減少であるから ② が1<t<1に解をもつとき,f(x)が極値をもつ. α≠0 より t=-- (i) a>0 のとき 1 a -1<--<0であるから, a -2 商の微分 (分母)=sin'x>0より,分~ 子についてだけ考えればよい. a>1 <a>0より, -a <-1 a>1

回答募集中 回答数: 0
数学 高校生

マーカーを引いた部分が求められる理由を教えてください。 公式などがあるのでしょうか?💦

AA A3 A2 基本 例題 29 無限等比級数の応用 (2) XOY [=60°] の2辺 OX, OY に接する半径1の 円の中心を とする。 線分00 と円0 との交点 を中心とし、 2辺OX, OY に接する円を Oとする。 以下、同じようにして,順に円 03, 0, 00000 Y O₁ 59 A1 253 基本事項 21 を作る。このとき,円 01,02, 求めよ。 X ・・・・・・ の面積の総和を 60° 基本28 2章 4 総和, CHART & SOLUTION 図形と極限 無限級数 用いると,次 えることが +A2A3 2番目と (n+1) 番目の関係を調べて漸化式を作る ① 00+1の半径をそれぞれn, n+1として, n と n+1の関係式 (漸化式) を導く。直角 三角形に注目するとよい。 そして, 数列{r} の一般項を求め, 面積の総和を無限等比級数 の和として求める。 解答 Y 円0mの半径,面積を,それぞれ回 S とする。 円O は 2 辺 OX, OY に 接しているので, 円 0 の中心On は, 2辺 OX, OY から等距離にある。 27 2+1 +...... ar) よって,点0m は XOY の二等分線 上にある。 O.. +1 X H S 30°+1 (0, ar3) +....... +……) をαと JJR これとOm0n+1=00-00n+1 から rn=2rn-2rn+1 ゆえに,XOO=60°÷2=30°であ るから 00=2rn 円とOX との接点 をHとすると, OOH は3辺が 2:1:√3 の からの直角三角形。これ 着目して,n+1 rn 1 きる ゆえに rn+1= またn=1の関係を調べる。 2 n-1 n-1 60° よって- (1/2) したがってSx (1) 30° 00 ゆえに,円 01, O2, の面積の総和 ΣSn は, 初項 π, 公 n=1 比 1/3の無限等比級数である。 141 であるから,無限等 比級数は収束し、その和は π 4 1-1 (初) (公) の PRACTICE 29 3 正方形 Sn, 円 Cn (n=1, 2,.....) を次のように定める。 Cm は Sm に内接し, Sn+1 は 1である。 Cn に内接する。 Sの1辺の長さをαとするとき 円周の総和は [ [工学院大 ]

回答募集中 回答数: 0
古文 高校生

⑤、⑨が已然形 ⑪連用形⑫連体形⑱終止形になんでなるのですか?

3 台灣衛星予備校 健 用言の活用 Kenji 動詞の活用 〈練習問題〉 東進衛星予 実力講師 で古文を から応用ま 明かし、 や古文 国の受験 へと引 古文読 文単語 クス) (学 さあ次は 問題を解いて みましょう! とし。 問 次の文章を読み、あとの問に答えよ。 ゆく川の流れは絶えずして、しかも、もとの水にあらず。よどみに浮かぶうたかたは、かつ 消えかつ結びて、久しくとどまりたるためしなし。世の中にある人とすみかと、またかくのご みやこ こい いらか いや あした かた " たましきの都のうちに、棟を並べ、甍を争へる、高き、卑しき、人のすまひは、世々を経て 尽きせぬものなれど、これをまことかと尋ぬれば、昔ありし家はまれなり。あるいは去年焼け 今年作り。あるいは大家滅びて小家となる。住む人もこれに同じ。所も変はらず、人も多 かれいにしへ見し人は、二、三十人が中に、わづかにひとりふたりなり。朝に死に、夕べに 生まるるならひ、ただ水のあわにぞ似たりける。知らず、生まれ死ぬる人、いづ方より来たり いづ方へ去る。また知らず、仮の宿り、たがためにか心を悩まし、何によりてか目を喜 ばしむる。その、主とみかと、無常を争ふさま、いはば朝顔の露に異ならず。あるいは露落 ちて花残れり。残るといへども朝日に枯れぬ。あるいは花しぼみて露なほ消えず。消えずとい 「方丈記』 あるじ へどもりを待つことなし。 問傍線部①~2の動詞の活用の種類は何か。 ア~ケの記号で答えよ。 ア… 四段活用 イナ行変格活用 ウ・・・ラ行変格活用エ…下一 上二段活用 キ・・・下二段活用 ク ・・・カ 別冊 P.5

回答募集中 回答数: 0