学年

質問の種類

生物 高校生

シアノバクテリア→細菌 葉緑体→真核生物 ミトコンドリア→アーキアという認識で合ってますか?

の進化 ③ 昆虫の翅、鳥の翼は相岡番目で、牧東進化の結果と考えられる。 ② 昆虫の翅、鳥の翼は相似器官で,適応放散の結果と考えられる。 [12 熊本大 改] ◎ 14.遺伝子頻度の変化 49 ハーディ・ワインベルグの法則が成立するある動物集団において、この 動物の体色を黒くする顕性遺伝子4と,体色を白くする潜性遺伝子αの遺伝子頻度をそれぞれかとg(た だし,+g = 1) とする。 ①か この動物集団におけるヘテロ接合体の頻度を、次の①~④のうちから一つ選べ。 ②pa 3 2pq ④ g 2 この動物集団では体色が白色の個体が全体の16%存在していた。この集団におけるg の値とし て最も適当なものを,次の①~⑥のうちから一つ選べ。 ① 0.16 ② 0.24 ③ 0.40 ④ 0.60 0.76 ⑥ 0.84 問3 問2の集団において,体色が白色の個体をすべて除去した場合の, 次世代におけるαの頻度とし がない組合せの島は て最も適当なものを,次の①~⑥のうちから一つ選べ。 ① 0.20 ② 0.24 ③ 0.29 ④ 0.36 ⑤ 0.40 ⑥ 0.50 〔神戸大改〕 15.3 ドメイン説 3分 次の図は、3ドメイン説にもとづいた生物の系統関係を模式的に表している。 図中の2本の破線は, 葉緑体またはミトコンドリアの(細胞内) 共生によって生じた系統関係を表したも ②あ のである。 ドメインA ア ドメインB ドメイン C イ すべての生物の共通祖先 問1 図中のドメイン A~Cの名称として最も適当なものを,次の①~⑥のうちからそれぞれ一つず つ選べ。 顔か ① 細菌 ②菌類 ③ アーキア ④ 原生生物 ⑤ 真核生物 ⑥ 原核生物 問2 図中のア . イに入る生物種として最も適当なものを、次の①~ ⑨ のうちからそれぞ れ一つずつ選べ。 ① 緑色硫黄細菌 ④ 大腸菌 ⑦バフンウニ ⑧ アメーバ ② メタン生成菌 ( メタン菌) ⑤ 酵母(酵母菌) ③ シアノバクテリア T ⑥ ヒト ⑨ ゼニゴケ 0 〔19 センター試改 第2章 進化のしくみと生物の系統 1

回答募集中 回答数: 0
数学 高校生

質問は写真にかいてあります

3a=0 ②が が虚数解をもっ 基本 41 重要例 43 虚数を係数とする 2次方程式 00000 xの方程式 (1+i)x2+(k+i)x+3+3ki = 0 が実数解をもつように, 実数k の値を定めよ。 また、 その実数解を求めよ。 CHART & SOLUTION 2次方程式の解の判別 判別式は係数が実数のときに限る D≧0 から求めようとするのは完全な誤り (下の INFORMATION 参照)。 実数解をα とすると (1 + i) o' + (k+i)a+3+3ki = 0 この左辺を a+bi (a, b は実数) の形に変形すれば、 複素数の相等により 0 a=0,b=0 ← α, kの連立方程式が得られる。 基本 38 2章 9 解答 方程式の実数解をα とすると 整理して (1+i)a2+(k+i)a+3+3ki=0 (Q2+ka+3)+(α2+α+3k)i=0 x=α を代入する。 ←a+bi=0 の形に整理。 α, kは実数であるから, a+ka+3, 2 + α+3k も実数。この断り書きは重要。 ①よって 複素数の相等。 a2+ka+3=0 ① どうし Q2+α+3k=0 ...... ② から (k-1)α-3(k-1)=0 ( のか ① 分かりません (k-1)(a-3)=0 k=1 または α=3 [1] k=1のとき ① ② はともに α2+α+3=0 となる。 これを満たす実数αは存在しないから、不適。 [2] α=3 のとき ① ② はともに 12+3k=0 となる。 ゆえに k=-4 [[1], [2] から, 求めるkの値は 実数解は k=-4 x=3 INFORMATION ← α を消去。 infk を消去すると 03-2α²-9=0 が得られ, 因数定理 (p.87 基本事項 21 ) を利用すれば解くことがで きる。 6=-47 ←D=12-4:1.3=-110 a²+9+3k38: ②:32+3+3k=0~ ①:32+3k+3=0 a=3~4とでたけど 2次方程式の解と判別式 管に-4はないのか →万かりみん 2次方程式 ax2+bx+c=0 の解を判別式 D=62-4ac の符号によって判別できる のは a, b, c が実数のときに限る。 例えば, a=i, b=1,c=0 のとき 62-4ac=1>0 であるが, 方程式 ix²+x=0 の解 はx=0, i であり,異なる2つの実数解をもたない (p.85 STEP UP 参照)。 PRACTICE 430 xの方程式 (1+i)x2+(k-i)x-(k-1+2=0 を定め

未解決 回答数: 0
数学 高校生

マーカーを引いた部分が求められる理由を教えてください。 公式などがあるのでしょうか?💦

AA A3 A2 基本 例題 29 無限等比級数の応用 (2) XOY [=60°] の2辺 OX, OY に接する半径1の 円の中心を とする。 線分00 と円0 との交点 を中心とし、 2辺OX, OY に接する円を Oとする。 以下、同じようにして,順に円 03, 0, 00000 Y O₁ 59 A1 253 基本事項 21 を作る。このとき,円 01,02, 求めよ。 X ・・・・・・ の面積の総和を 60° 基本28 2章 4 総和, CHART & SOLUTION 図形と極限 無限級数 用いると,次 えることが +A2A3 2番目と (n+1) 番目の関係を調べて漸化式を作る ① 00+1の半径をそれぞれn, n+1として, n と n+1の関係式 (漸化式) を導く。直角 三角形に注目するとよい。 そして, 数列{r} の一般項を求め, 面積の総和を無限等比級数 の和として求める。 解答 Y 円0mの半径,面積を,それぞれ回 S とする。 円O は 2 辺 OX, OY に 接しているので, 円 0 の中心On は, 2辺 OX, OY から等距離にある。 27 2+1 +...... ar) よって,点0m は XOY の二等分線 上にある。 O.. +1 X H S 30°+1 (0, ar3) +....... +……) をαと JJR これとOm0n+1=00-00n+1 から rn=2rn-2rn+1 ゆえに,XOO=60°÷2=30°であ るから 00=2rn 円とOX との接点 をHとすると, OOH は3辺が 2:1:√3 の からの直角三角形。これ 着目して,n+1 rn 1 きる ゆえに rn+1= またn=1の関係を調べる。 2 n-1 n-1 60° よって- (1/2) したがってSx (1) 30° 00 ゆえに,円 01, O2, の面積の総和 ΣSn は, 初項 π, 公 n=1 比 1/3の無限等比級数である。 141 であるから,無限等 比級数は収束し、その和は π 4 1-1 (初) (公) の PRACTICE 29 3 正方形 Sn, 円 Cn (n=1, 2,.....) を次のように定める。 Cm は Sm に内接し, Sn+1 は 1である。 Cn に内接する。 Sの1辺の長さをαとするとき 円周の総和は [ [工学院大 ]

回答募集中 回答数: 0