学年

質問の種類

数学 高校生

高一の数1です 三角比の表を使う問題でこの三角比の表とはどういう意味なのでしょうか?謎の表を使って問題を解くのに違和感があって気になります

15° 16° 7° 8° 5° 0.1392 0.1564 0.1736 0.1908 11° 12° 0.2079 13° 0.2250 14° 0.2419 0.2588 0.2756 0.2924 0.3090 0.3256 0.3420 0.3584 0.3746 0.3907 0.4067 0.4226 0.4384 0.4540 0.4695 0.4848 0.5000 0.5150 0.5299 0.5446 0.5592 。 10 P 8° 9° 10° Tom's in toto sin 0.0000 0.0175 0.0349 0.0523 0.0698 0.0872 0.1045 0.1219 0.5736 0.5878 0.6018 0.6157 0.6293 0.6428 0.6561 0.6691 0.6820 0.6947 20.7071 cos 1.0000 0.9998 0.9994 0.9986 0.9976 0.9962 0.9945 0.9925 0.9903 0.9877 0.9848 0.9816 0.9781 0.9744 0.9703 0.9659 0.9613 0.9563 0.9511 0.9455 0.9397 0.9336 0.9272 0.9205 0.9135 0.9063 0.8988 0.8910 0.8829 0.8746 0.8660 0.8572 0.8480 0.8387 0.8290 0.8192 0.8090 0.7986 0.7880 0.7771 0.7660 0.7547 0.7431 0.7314 0.7193 20.7071 三角比の表 tan 8 0.0000 0.0175 0.0349 0.0524 0.0699 0.0875 0.1051 0.1228 0.1405 0.1584 0.1763 0.1944 0.2126 0.2309 0.2493 0.2679 0.2867 0.3057 0.3249 0.3443 0.3640 0.3839 0.4040 0.4245 0.4452 0.4663 0.4877 0.5095 0.5317 0.5543 0.5774 0.6009 0.6249 0.6494 0.6745 0.7002 0.7265 0.7536 0.7813 0.8098 0.8391 0.8693 0.9004 0.9325 0.9657 1.0000 0 sin 45° 46° 47° 48° 49° 50° 51 52° 53° 54° 55° 0.7660 0.7771 0.7880 0.7986 0.8090 0.8192 0.8290 0.8387 0.8480 0.8572 0.8660 0.8746 0.8829 63° 0.8910 64° 0.8988 65° 0.9063 66° 0.9135 67° 0.9205 68° 0.9272 69° 0.9336 70° 56° 57° 58° 59° 60° 61° 62° 71° 72° 73° 74° 75° 76° 77° 78° 79° 80° 0.7071 0.7193 0.7314 81° 82° 83° 84° 85° 86° 87° 88° 89° 90° 0.7431 0.7547 0.9397 0.9455 0.9511 0.9563 0.9613 0.9659 0.9703 0.9744 0.9781 0.9816 0.9848 0.9877 0.9903 0.9925 0.9945 0.9962 0.9976 0.9986 0.9994 0.9998 1.0000 cos 0.7071 0.6947 0.6820 0.6691 0.6561 0.6428 0.6293 0.6157 0.6018 0.5878 0.5736 0.5592 0.5446 0.5299 0.5150 0.5000 0.4848 0.4695 0.4540 0.4384 0.4226 0.4067 0.3907 0.3746 0.3584 0.3420 0.3256 0.3090 0.2924 0.2756 0.2588 0.2419 0.2250 0.2079 0.1908 0.1736 0.1564 0.1392 0.1219 0.1045 0.0872 0.0698 0.0523 0.0349 0.0175 0.0000 tan 1.0000 1.0355 1.0724 1.1106 1.1504 1.1918 1.2349 1.2799 1.3270 1.3764 1.4281 1.4826 1.5399 1.6003 1.6643 1.7321 1.8040 1.8807 1.9626 2.0503 2.1445 2.2460 2.3559 2.4751 2.6051 2.7475 2.9042 3.0777 3.2709 3.4874 3.7321 4.0108 4.3315 4.7046 5.1446 5.6713 6.3138 7.1154 8.1443 9.5144 11.4301 14.3007 19.0811 28.6363 57.2900 to 1 201

回答募集中 回答数: 0
数学 高校生

214. 次に2<a<3のとき 以降がわからないです。 なぜ2<a<3のときf(α)=f(α+1)とするのですか??

332 重要 例題 214 区間に文字を含む3次関数の最大・最小 f(x)=x-6x2+9xとする。 区間 α ≦x≦a +1 におけるf(x) の最大値 M(α) を めよ。 指針 まず, y=f(x)のグラフをかく。 次に, 幅1の区間a≦x≦α+1をx軸上で左側から協 しながら, f(x) の最大値を考える。 なお、区間内でグラフが右上がりなら M (a) = f (a+1), 右下がりなら M (a)=f(a) また,区間内に極大値を与える点を含めば, M (α) = (極大値) となる。 更に,区間内に極小値を与える点を含むときは, f(α)=f(α+1) となるαとαの大小に より場合分けをして考える。 NA CHART 区間における最大・最小 極値と端の値をチェック 解答 f'(x)=3x2-12x+9 =3(x-1)(x-3) f'(x)=0 とすると 増減表から, y=f(x)のグラフは 図のようになる。 [1] a+1<1 すなわち a <0のとき M(a)=f(a+1) =(a+1)³−6(a+1)²+9(a+1) =a³-3a²+4 [2] a <1≦a+1 すなわち 0≦a <1のとき よって x=1,3f(x) a= 9+√33 6 以上から a < 0, ① [4] X f'(x) + (-9)±√(-9)-4・3・4 9±√33 2・3 6 2 <a <3であるから,5√33 <6に注意してα= [3] 1≦a< 9+√33 6 練習 ⑤ 214 めよ。 ≦αのとき 1 0 |極大 4 yA 4 0≦a <1のとき M (α)=4; 1≦a< [2] 9+√33 6 a01 a+1 M(a)=f(1)=4 次に, 2 <α<3のとき f(α)=f(α+1) とすると α3-6a²+9a=α3-3a²+4 ゆえに 3²-9a+4=0 3 0 + |極小| 20 y=f(x) | [3] [4] -1- a3a+1x のとき M(α)=f(a)=α-6a²+9a 9+√33 6 M(a)=f(a+1)=a³-3a²+4 9+√33 6 ≦aのとき M (a)=a²-3a²+4; のとき M (a)=α-6a²+9a [1] 区間の右端で最大 YA 4 /11 1 1 1 4F 基本213 1 a 01 3 Na+1 [2] (極大値) = ( 最大値) YA 4F 最大 Oa 1 3 20.01 +1 [3] 区間の左端で最大 "1 11 7 V 1/ atl 最大 7 a 31 a+1 [4] 区間の右端で最大 YA ya. /3 1 a f(x)=x-3x²9x とする。 区間 t≦x≦t+2 におけるf(x) の最小値m(t) を求

回答募集中 回答数: 0
数学 高校生

198.2 記述に問題はないですか??

00000 よ。 接点 (2,-2) する。 える ='(a)(x-a) xの接点は は接線の下 >0 では接 ある。 この 曲線を2つに かし、 基本例題198 法線の方程式 2 -x³. 5xについて 3本 曲線 y= 9 ASES PO (1) 曲線上の点(2, -1/24) における法線の方程式 HEDON (2) (1)で求めた法線と曲線の共有点のうち、点 次のものを求めよ。 の線の方程式を求 指針 (1) 曲線y=f(x) 上の点A(a, f(a)) における法線の方程式は Ablicy 1 y—ƒ(a)=¯¯ƒ'(a)(x—a) (2)(1) で求めた法線の方程式と曲線の方程式を連立させて, xの3次方程式を解く。 解答 5 (1) f(x)=2012-2123xとするとf(x)=1/3x-33 5 6-2p+ よって、点 (2, -1/24 ) における接線の傾きは ② から 42 これをif'(2)= ・・22. ne by f(2)=3.2²-3-1 5 -14) 以外の点の座標 9 p.308 基本事項 ② 8318+x5¹²x=x すなわちy=-x+- 4 9 MAUROOM ASOR (2) 求める共有点のx座標は、次の方程式のx=2 以外の実数 解である。 5 4 a = -1 (²²x²-²3²x = -x + 1² ピー 整理して x3-3x-2=0 よって (x-2)(x+1)=0x したがって,求める点のx座標は, x=-1であり,求める共 13\-d) 有点の座標は (-1,13) 練習 ③ 198 (1) 曲線上の点 (1, 1) における法線の方程式 曲線y=x3-3x²+2x+1について,次のものを求めよ。 00000 - 24 ABST ゆえに,法線の傾きは-1である。 法線の傾きをとすると したがって、求める法線の方程式は D=6} =³&t$$_m׃′(2)=−1 よって y−(−14)=-1·(x-2) »)S—t—gl_inl-(6 *??_m=_ƒ(2) YA O lfd y=f(x) A 法線 法線 接線(21) 接線 (2) (1)で求めた法線と曲線の共有点のうち, 点 (1, 1) 以外の点の座標 x D7564 x=2が1つの解となるから, 左辺は x-2 を因数にもつ。 x=-1は重解であるから, この法線は曲線の接線でも ある。 p.314 EX129 311 6章 35 接 線 で n) Exc 36

回答募集中 回答数: 0
数学 高校生

カッコ2番について、赤の下線をつけた部分がなぜそうなるのか分からないので教えて下さい!

〔3〕 スキー競技の「モーグル」 は, こぶのある斜面をスタート地点からゴール地点 まで滑り降りかかった時間によるタイム点, ジャンプ演技によるエア点。ターン の技術によるターン点の合計を競う競技である。 下の表は, 2017年に札幌で行われたある大会の上位16人の得点を表している。 タイム点Xは20点満点, エア点Yも20点満点, ターン点Zは60点満点で, 合 計得点 W は 100点満点である。 エア点とターン点は審判の採点によって決まり, タイム点は斜面を滑り降りるのにかかった時間T (秒) によって決まる。 順位 時間(秒) タイムX (点) エアY(点) ターン Z(点) 合計 W (点) 1 16.86 15.26 53.10 85.22 2 16.25 12.85 53.70 3 15.72 14.40 51.60 4 16.86 13.30 (51.20 5 16.04 15.41 49.70 6 15.69 13.47 50.00 7 15.49 13.60 50.00 8 16.14 10.79 (51.20 9 14.44 14.92 48.50 10 16.53 12.48 47.80 11 14.71 12.81 49.10 12 13.60 10.30 42.60 12.37 6.27 43.60 9.35 8.12 41.00 9.80 7.47 39.60 5.93 7.18 42.80 13 14 15 16 22.20 22.63 23.01 22.20 22.78 23.03 23.17 22.71 23.92 22.43 23.73 24.52 25.40 27.55 27.23 29.99 82.80 81.72 81.36 81.15 79.16 79.09 78.13 77.86 76.81 76.62 66.50 62.24 58.47 56.87 55.91 (数学Ⅰ・数学A 第2問は次ページに続く。)

回答募集中 回答数: 0