学年

質問の種類

数学 高校生

解答のところでなぜy軸との交点のy座標はcであるのかがわかりません。 教えてください🙏

基本例題 52 2次関数の係数の符号とグラフ 2次関数y=ax2+bx+c のグラフが右の図で与えら れているとき,次の値の符号を調べよ。 00000 y (1) a (2) b (4) 62-4ac (5) a-b+c CHART & THINKING グラフから情報を読み取る (3)c p.91 基本事項 4.基本51 上に凸か, 頂点の座標は? 式の値は直接求めることができない。 「上に凸か,下に凸か」, 「軸や頂点の位置」, 軸との交点の位置」 などに着目して、 式の値の符号を調べよう。 下に凸か? 3章 x=-1 における 10 座標は? 7 x 軸との交点の 位置は ? 軸の 位置は? 解答 関数とグラフ ax2+bx+c=ax+ b 2a 62-4ac ax2+bx+c 4a よって, 放物線y=ax2+bx+c の軸は直線x=- b2-4ac 頂点の座標は 4a る。 b =a(x²+x)+c 2a" y軸との交点のy座標はcであ ={(x+2 b2 b +c 2a) =(x+2)- b +c 2a また, x=-1のとき y=a(-1)2+6(-1)+c=a-b+c =a(x+1)² 62 62-4ac 2a 4a (1) グラフは上に凸の放物線であるから a <0 b b (2) 軸が x<0 の部分にあるから <0 2a ->0 2a (1)より, a < 0 であるから (3) グラフがy軸の負の部分と交わるから (4)頂点のy座標が正であるから b<0 c<0 b2-4ac >0 4a (1)より, a<0 であるから -(b2-4ac)<0 すなわち b2-4ac > 0 (5) a-b+c は,x=-1 におけるyの値である。 ←放物線y=ax2+bx+c について, x軸と異なる2点で交 わる⇔ b2-4ac > 0 が成り立つ (p.139 以降 を参照)。 グラフから,x=1のとき y>0 すなわち a-b+c>0 PRACTICE 52Ⓡ ③ 右の図のような2次関数y=ax2+bx+c のグラフについて, 次の値の正。 0負を判定せよ。 (1) a (4)62-4ac (2) 6 (3)c (5) a+b+c (6) a-b+c 0 1

解決済み 回答数: 1
数学 高校生

左下の 3C2 ってなんですか?

33 重要 例題 50 平面上の点の 右の図のように,東西に4本, 南北に4本の道路が ある。地点Aから出発した人が最短の道順を通って 地点Bへ向かう。このとき,途中で地点を通る確 率を求めよ。 ただし、各交差点で,東に行くか, 北 に行くかは等確率とし,一方しか行けないときは確 1でその方向に行くものとする。 CHART & THINKING A 求める確率を A→P→Bの経路の総数 ABの経路の総数 から、 4C3×1 6C3 とするのは誤り! この理由を考えてみよう。 は,どの最短の道順も同様に確からしい場合の確率で,本間 は道順によって確率が異なるから, A→Bの経路は同様に 確からしくない。例えば, A 1/2×12×1/2×1/2×1×1=1/6 PI1Bの確率は A 1/2×1/2×1/2×11×1=1/ 1PBの確率は A よって、Pを通る道順を, 通る点で分けたらよいことがわかるが, どの点をとればよいだろ うか? 解答 右の図のように、地点 C, C', P' をとる。 Pを通る道順には次の2つの場合があり,これらは互いに 排反である。 [1] 道順 AC'′ →C→P→B この確率は1/2×1/2×1/2×1×1×1=1/ 1 x1x1 8 [2] 道順AP'′ →P→B (9) この確率は 3 16 よって、求める確率は1/2+3 5 8 16 16 P' P A CC CPは1通りの道順であ ることに注意。 進む。 [1] [2]○○○と進む。 ○には2個と1個 が入る。

解決済み 回答数: 1
英語 高校生

5のChildren〜の文で、訳が全く分かりません。我々の中に見い出す必要のある冷静な大人とか、どこをどう訳したらそうなるんですか!?( ඉ-ඉ )あと、adult〜はどうしてカンマで分けられてるんですか?calmの修飾ですか??また、witness in usはどういう訳... 続きを読む

第4・5段落 prank 12. ¹Our children make us angry sometimes. 2They get lazy, they make mistakes, they do silly, mischievous or thoughtless things. 3But when we adults react without thinking, when we shout or strike, we usually accomplish little. And rightly so: we exhibit the very behavior we're trying to discourage. 5Children do need discipline, but how can we get them to do the right thing without losing the calm, adult dignity that they need to witness in us? 子供はときに私たちを怒らせる。 2怠けたり過ちを犯したり, ばかばかしいことやいたず ら、無分別なことをする。 だが私たち大人が考えもなしに反応したり怒鳴ったりぶったりして も、たいていはほとんど効果がない。 4それも当然だ。私たちは自分たちがやめさせようとして いる行動そのものを見せているのだから。 5子供にしつけが必要なのは確かだが、子供たちが我々の中に見いだす必要のある冷静な大人 らしい威厳を失うことなく,どのようにして彼らに正しいことをさせればよいのだろうか。 lazy 「怠けた」 □ mischievous 「いたずら好きな」 □thoughtless 「軽率な, 考えのない」 accomplish little の little は名詞で「少ししかないもの」という意味。

解決済み 回答数: 1
数学 高校生

どうしてD2が出てくるのでしょうか?2回も判別式を使う意味がわからないです。どなたか教えていただけないでしょうか?

83 重要 例題 50 2次式の因数分解 (2) のような解をもつよう p.76 基本事項 5.基本4 Enf. 2次関数 (x)=xalle つグラフを利用すると ) D≧ 0, (軸の位置) ≧ 2, f(2)≥0 f(2) 2 a f(2)<0 x=1~1 2 第6_5 | 補足 参照) [⑤] 00000 4x2+7xy-2y2-5x+8y+k がx,yの1次式の積に因数分解できるように, 定数kの値を定めよ。 また, そのときの因数分解の結果を求めよ。 [類 創価大] A CHART & THINKING 2次式の因数分解 =0 とおいた2次方程式の解を利用 基本 2046 xyの1次式の積に因数分解できる」とは, (与式) = (ax+by+c) (dx+ey+f) の形に表 されるということである。 また, 与式をxの2次式とみたとき (yを定数とみる), (与式)=0とおいた 2次方程式 4x2+(7y-5)x-(2y²-8y-k)=0の判別式をDとする -(7y-5)-√DI と、与式は41x- −(7y−5) +√D₁}{x — 8 8 の形に因数分解できる。 この因 ①....... 数x、yの1次式となるのは, D1 が (yの1次式) すなわち」についての完全平方式のと きである。それは,1=0 とおいて,どのような条件が成り立つときだろうか? 解答 時 ) (与式)=0とおいた方程式をxの2次方程式とみて 4x2+(7y-5)x-(2y2-8y-k)=0 ...... ① である。 の判別式をDとすると D=(7y-5)2+44(2y2-8y-k)=81y2-198y+25-16k 与式がxとyの1次式の積に分解されるための条件は,①の 解がyの1次式となること, すなわちD がyの完全平方式 となることである。 D1 = 0 とおいたyの2次方程式 81y2-198y+25-16k=0 の判別式を D2 とすると 4 D2=(-99)²-81(25-16k)=81{11²—(25—16k)} =81(96+16k) Q D2=0 となればよいから 96+16k=0 よって k=-6 このとき, D=81y2-198y+121=(9y-11)2 であるから, ①の解は x= __(7y-5)±√(9y-11)-(7y-5)±(9y-11) 8 8 2章 7 解と係数の関係 000 とき, の値の範囲 る。 | 数学で 必要十分 inf 恒等式の考えにより 解く方法もある。 (解答編 および p. 59 EXERCISES 15 参照 ) 前ペー (1) と同 ← D1 が完全平方式⇔ 2次方程式 D=0 が重 解をもつ 計算を工夫すると 992=(9.11)²=81・112 √ (9y-11)=l9y-11| <A> A> 参考 指針 ての 不等 う。 53+4212 とき, D0 は成り っている。 すなわち x=- 4 _y-3-2y+2 ゆえに (与式)=4(x-2-3)(x-(-2y+2)} 754 解説 参照) =(4x-y+3)(x+2y-2) うな実数の い解をもつ であるが,±がついて いるから, 9y-11の絶 対値ははずしてよい。 括弧の前の4を忘れな いように。 PRACTICE 50º を定数とする2次式 x2+3xy+2y2-3x-5y+k がxyの1次式の積に因数分解 できるときの値を求めよ。 また, そのときの因数分解の結果を求めよ。 [東京薬大] D + A

解決済み 回答数: 1