学年

質問の種類

生物 高校生

答えを教えて欲しいです。お願いします。

5 10 15 20 25 資料学習 顕微鏡観察 CHECK▼ 1. 顕微鏡の操作 資料 りんぺんよう タマネギの鱗片葉の表皮をはがして, スライドガラスにのせて水を1滴落と タマネギ の鱗片葉 し,カバーガラスをかけてプレパラートをつくった。これを顕微鏡で観察する りんかく と,細胞の輪郭だけが見えた。 問題 問1 核を観察するにはどうすればよいだろうか。 問2 視野内に見えるゴミが,どこについたものかを調べるにはどうすればよ いか。 (a) 接眼レンズのゴミの場合 (b) プレパラートのゴミの場合 (C) 対物レンズのゴミの場合 問3 右図の X の部分で,細胞がきれいに見えないのはなぜか。 理由を考えて 問4 問5 みよう。 先に低倍率で観察してから, 高倍率に切り替えるのはなぜか。 次の点に ついて考えてみよう。 (a)低倍率と高倍率では,どちらが明るく見えるか。 (b)低倍率と高倍率では、どちらが広範囲に見えるか。 (c) プレパラートを動かして,きれいに見える部分を探す作業は,低倍率と高倍率ではどちらの方が容易か。 ピントを合わせるときに、まず対物レンズをプレパラートに近づけたあとに, プレパラートと対物レンズを 離すようにして行うのはなぜか。 2. ミクロメーターによる測定 資料 ある倍率で接眼ミクロメーターと対物ミクロメーターを顕微鏡 にセットし,目盛りが一致する点 (M, N) を求めたところ図aの ようになった。 また, 同じ倍率でユリの花粉を接眼ミクロメータ で計測すると,図のようになった。 問題 問6 花粉の長さ(ここでは長径) は何〔μm〕 かを求めよ。 ただし、 対物ミクロメーターの1目盛りは10μmである。 実線は対物ミクロメーターの目盛り 破線は接眼ミクロメーターの目盛り M 3 N 1 8 図 a 図 b

回答募集中 回答数: 0
数学 高校生

(2)の問題で解がともに1より小さいときなぜa-1+b-1が0より小さくなるのか理解できません またなぜa-1 b-1と置くのでしょうか

x2-4 x x x2-4 B 2 x-2 x X x ÷ x (x+2)(x-2) x-2 x 北 x-2 x × x-2 =x+2 よって (2) HC (x-1) xx4(x+2)(x-2) x- X 別解 B 2 x-2 1. 1- xx X x =x+2 x-2 3 2次方程式2mx+2m²-5=0が,次のような異なる2つの解をもつとき,定数の値の範囲を求めよ。 【重要】 (1) ともに1より大きい (2) ともに1より小さい この2次方程式の2解をα, B, 判別式をDとする。 1/2=(m)-1-(2m²-5)=m+5=-(m+√5)(m-√5) また,解と係数の関係により α+β=2m, aβ=2m²-5 (1) 方程式が条件を満たすのは,次が成り立つときである。 D>0で, AAI 直線 よ ①ゆよ y (-1)+(β−1)>0 かつ(α-1XB-1)>0 D>0より -(m+√5)(m-√5)>0√5 <<√5 ... ① また (α-1)+(β-1)=(a+β)-2=2m-2 (α-1)β-1)=αβ-(a+β)+1=(2m²-5)-2m+1=2(m-m-2)=2(m+1Xm-2) *E**** (α-1XB-1)>0より2(m+1Xm-2)>0 (−1)+(β-1)>0より 2m-2>0 よってm>1 よって効く-1,2m ③ ① ② ③ より 2<<√5 (2) 方程式が条件を満たすのは,次が成り立つときである。 D>0で, (-1)+(β−1)<0 かつ (α-1Xβ-1)>0 D>0より -√5cm<√5 (−1)+(β−1)<0 より 2m-2<0 よって1 (a-1X8-1)>0) m<-1, 2<m (3) ① ② ③ の共通範囲を求めて -√5 <<-1 次の3次方程式を解け 4x+8=0 P(x) =42+8 とすると P(2) =23-4-23+8=0 *** 0 -√5 -1 1 2√√5 m -√5-1 D- 12.5m x よって、P(x) は x2 を因数にもち P(x)=(x-2)(x-2x-4)

回答募集中 回答数: 0
数学 高校生

この辺の根本的な考え方から分かりやすく教えてもらえませんか。むらさき線のところが特に分からないです。Oでかこっているのは全部1ミリも分からないです。

に (1) 5. B 1 1 (1) DE//BCより AE DE D M AC BC 3 2 よって, BC=6(cm) 9 BC XC (2) ∠ABC= ∠ACD 02 2=α×4より,216a y=ax2 のグラフが、 点A(4,2)を通るから、 <BAC= ∠CAD (共通) より, 2組の角がそれぞれ等しいので △ABC∽△ACD よって, AB: AC=AC: AD 6AD=9 6:3=3 3 よって,a= 1/2 である。 AB=OB だから,△OABはAB=OB の二等辺 三角形である。 OA の中点をM (21) とすると, OBMは直 角三角形であるから OB2 = OM2+MB2 B(0, b) とすると, OB2=62 OM2+MB2=22+12+22+(b-1)2 =62-26+10 よって、62=62-26+10 これを解いて.6=5 よって、Bのy座標は5である。 J (2) ∠OBAの二等分線を1とすると, 1 は線分 OA の中点M(2,1) を通る。 よって、この傾きは-2である。 したがって, AD=2 (cm) (3)底面積は, 4×4=16 (cm²) 高さは, 体積は,1/23> -×16×3=16 (cm3) (4) BD=3cm, ∠ADB=90° だから, 三平方の定理より, AB2=32+42=25 AB>0より, AB=AC=5(cm) (5) 弧 BC に対する円周角より ∠BAC = ∠BDC=65° ∠AEB=180°(65°+15°)=100° また,切片が5より1の式は,y=-2x+5である。 (6) 11/113 π33=36 (cm3) πC (3)点Cは,y=1/2x2のグラフ上にあるから, c(t, 1/2)とおける。 2 (1) △ABCとAED において さらに,点Cは1上にもあるから, t=-2t+5 8 これより, =-16t+40 t²+16t-40=0 が成り立つ。 <BAC= ∠EAD (共通) 仮定より ∠ABC=∠AED ①,②より 2組の角がそれぞれ等しい △ABC∽△AED よって AB AE = AC: 6:AE=5:3

回答募集中 回答数: 0
数学 高校生

この辺の根本的な考え方から分かりやすく教えてもらえませんか。むらさき線のところが特に分からないです。Oでかこっているのは全部1ミリも分からないです。

に (1) 5. B 1 1 (1) DE//BCより AE DE D M AC BC 3 2 よって, BC=6(cm) 9 BC XC (2) ∠ABC= ∠ACD 02 2=α×4より,216a y=ax2 のグラフが、 点A(4,2)を通るから、 <BAC= ∠CAD (共通) より, 2組の角がそれぞれ等しいので △ABC∽△ACD よって, AB: AC=AC: AD 6AD=9 6:3=3 3 よって,a= 1/2 である。 AB=OB だから,△OABはAB=OB の二等辺 三角形である。 OA の中点をM (21) とすると, OBMは直 角三角形であるから OB2 = OM2+MB2 B(0, b) とすると, OB2=62 OM2+MB2=22+12+22+(b-1)2 =62-26+10 よって、62=62-26+10 これを解いて.6=5 よって、Bのy座標は5である。 J (2) ∠OBAの二等分線を1とすると, 1 は線分 OA の中点M(2,1) を通る。 よって、この傾きは-2である。 したがって, AD=2 (cm) (3)底面積は, 4×4=16 (cm²) 高さは, 体積は,1/23> -×16×3=16 (cm3) (4) BD=3cm, ∠ADB=90° だから, 三平方の定理より, AB2=32+42=25 AB>0より, AB=AC=5(cm) (5) 弧 BC に対する円周角より ∠BAC = ∠BDC=65° ∠AEB=180°(65°+15°)=100° また,切片が5より1の式は,y=-2x+5である。 (6) 11/113 π33=36 (cm3) πC (3)点Cは,y=1/2x2のグラフ上にあるから, c(t, 1/2)とおける。 2 (1) △ABCとAED において さらに,点Cは1上にもあるから, t=-2t+5 8 これより, =-16t+40 t²+16t-40=0 が成り立つ。 <BAC= ∠EAD (共通) 仮定より ∠ABC=∠AED ①,②より 2組の角がそれぞれ等しい △ABC∽△AED よって AB AE = AC: 6:AE=5:3

回答募集中 回答数: 0
生物 高校生

(2)でアミノ酸の置換数を()で表してあるとかいてあおり、シンプルに小さい順で考えたのですが、ハリモグラとニワトリのところがの置換数のところがいまいちわからないので、教えていただきたいです。

知 37. 分子系統樹 いろいろな生物種で同じ 遺伝子のDNAの塩基配列を比べると,変化しヒト (0) ている塩基の数は、2つの種が分かれてからの 時間に比例して① [増える, 減る] 傾向が見られ る。また, DNAの塩基配列をもとにつくられ るタンパク質のアミノ酸配列についても,同じ 傾向が見られる。 このようなDNAの塩基配列 やタンパク質のアミノ酸配列の変化を (2) という。DNAの塩基配列やタンパク質のアミ イヌ (24) B ハリモ グラ (38) ニワトリ (36) 0.8 1.35 2.2 分岐した年代は, 化石から推定され たもの ( ×億年) 3 3.5 4.4 0 2 3 時間 (億年) ノ酸配列の変化といった分子情報をもとにして描く系統樹を(③)という。図はヘモグロビン α 鎖のアミノ酸の置換数と分岐年の関係を示したものである。 (1) 文章中の空欄に適当な語句を記入せよ。 ただし,①は正しい語句を[ ]から選べ。 ①[増える [ ] [分子進化] ③[ ガチ線付] 分子線樹] 図中の(ア)~(ウ)に該当する生物名を下の (a)~(c)から選べ。 なお, 生物名に書きした数値は、 ヒトと比べたときのアミノ酸の置換数である。 (a) イモリ (62) (b) カンガルー (27) (c) コイ (68) (ア)[b](イ)[a] (ウ)[C] p.37 4

回答募集中 回答数: 0