学年

質問の種類

数学 高校生

(1)の答えは1なんですけど2はなんで違うんですか?

[10 標準 10分 解答・解説 p.17 先生と太郎さんと花子さんは、次の問題とその解答について話している。 三人の会話を読んで、下の問い 答え 【問題】 xy≦0とする。 x,yの関数 x2-4xy+6y2+6x -4y +22 の最小値を求めよ。 ■ 【解答 A】 x 2-4xy+6y2 + 6x -4y+22 = (x-2y+3)^+2(y+2)² + 5 ここで,-3≦y≧0の範囲で2v+2)² + 5 の最小値は y=-2のとき5 109 であるから 求める最小値は5である。 【解答B】 ここで, -5≦x≦0 の範囲で (x+7)2 +5の最小値は 3 x-4xy+6y² + 6x -4y+ 22=(y-1/3x-1/31) 2+1/(x+7)2 +54 19 x=-5のとき 1/23(-5+7)² + 5 = - 3 BELISAR 19 であるから、求める最小値は である。 3 ア TOO CREFO 先生 : 同じ問題なのに, 解答 A と解答B で答えが違っていますね。 先生:なぜ解答と解答B で違う答えが出てしまったのか、考えてみましょう。 花子: 先生, ひょっとして ア ということですか。 先生: そのとおりです。 よく気づきましたね。 花子: 正しい最小値は イで,そのときのx,yの値はx=ウ (1) BROS HASTA OAS 05-x5=12-281 太郎 : どちらも計算は間違えていないみたい。でも, 答えが違うということは,少なくともどちらか は正しくないということだよね。 AFFOADURA (2) ノイ 同じものを繰り返し選んでもよい。 0-9 0 -7 ---- 3 00 -) ② -5 に当てはまるものを、次の⑩~③のうちから一つ選べ。 ⑩2(y+2)² +5は-3≦y≧0の範囲に最小値をもたない ①x=2y-3かつy=-2を満たすx,yの値が−5≦x≦0-3≦y≧0の範囲に存在しない 160 ②/3(x+7)² +5は5≦x≦0の範囲に最小値をもたない -3 (S) ③y= x+かつx=-5を満たすx,yの値が -5≦x≦0,-3≦y≦0 の範囲に存在しない 3 3 - ARSLAN y=I I に当てはまるものを、次の⑩~⑨のうちから一つずつ選べ。ただし, ですね。 -2 19

回答募集中 回答数: 0
数学 高校生

分かりません。教えてください!

計算問題の場合は必ず、 公式→数値代入→答えの順番で記入すること。 配点は全て2点 合計52点分 つぎ 問1 次の文章を読み「 内に当てはまる言葉を書き入れなさい。 (1) 時間や温度、面積や容積などのように、大きさだけで表される ① だかい (2) ①に対し、力や速度、磁界のように大きさと ② を持つ蓋を③ ひょうじゅうほう ASD 423225 (3) A=(ab)のような表示方法で表す方法をベクトルの ④ 表示という。 お +422 Asa 315 (4) A=ALΦのような表示方法で、大きさと位相差を表す方法をベクトルの ⑤ 表示という。 という。 (5) 交流回路において抵抗だけの回路は、電流と電圧vの位相差は無い(位相差0)。この状態を⑥という。 あちお (この回路において、抵抗R [Ω]、電圧V[V] と電流I [A]の関係は、I=⑦ で表す。 という。 あられ こうちゅう (7) 交流におけるインダクタンス (コイル)だけの回路において、電流の流れをさまたげる働きを持つものをX=WL=2Lです。この×⑧とい う。なお、この回路において電流は電圧vより位相が="[rad] 40 (8) XL [9] はインダクタンスL [H] と周波数 [Hz] の横に⑩する。 (9) 交流におけるコンデンサだけの回路において電気の流れをさまたげる働きを持つものをXc で表し、次のような式 1 1 @C 271C (10) Xc [2] は、 静電容量C [F] と周波数 † [Hz] の積に 13 で表す。このXを① ]という。この回路において電流は電圧vより位相がゆ=-radlだけ⑩ 2 10 する。 とには進むまたは遅れるのいずれかが入る。また、10分には比または反比例のいずれかが入る。 ② 3 4 8

回答募集中 回答数: 0
数学 中学生

この問題の(5)で、連立方程式を作って交点を求める時、妹はy=-60x+2400兄はy=75x-750の式の、2400と-750になるのはなぜですか?教えてください、! あと、なぜ23分20秒となるのかも教えて欲しいです。 写真は答えと問題文を載せてあります。

兄と妹が, 1200m離れた家と学校の間を1往復 した。 家と学校は一直線の道路で結ばれており, 妹は 一定の速さで歩き続けた。 一方,兄は、妹と同時に家を出発したが、学校に向 かう途中, 家から450mの地点で10分間立ち止まって 休んだため、妹より家に着くのが2分遅くなった。 右の図は、 妹につ いて, 家を出てから の時間と家からの距 離の関係を示したも のである。 また, 兄 は休んでいるとき以 (家)・・・ 外はつねに一定の速さで歩き続け、学校に着いたらす ぐに家に向かったものとする。 このとき、次の問いに答えなさい。 〈福井〉 (5点×6) (1) 妹の歩いた速さは分速何mか求めなさい。 (m) (学校)・・・ 1200- 1000 800 600 400 200 (m) | (学校)・・・ 1200 __ (2) 兄の歩いた速さは分速何mか求めなさい。 (家)・・・ (3) 兄について, 家を出てからの時間と家からの距離 の関係を表すグラフを,下の図にかき入れなさい。 A 0 0 (妹) 20 40(分) 10 30 40 (分) CHANTING (4) 2人の間の距離が最大となったのは出発してから 何分後か。 また, その距離は何mか求めなさい。 20 出発してから 100NOCHEME (5)2人が、歩きながらすれ違ったのは,出発してか ら何分何秒後か求めなさい。 15

回答募集中 回答数: 0